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Final Technical Report

ROBUST GAME THEORETIC GUIDANCE AND CONTROL
LAWS FOR MISSILE SYSTEMS

Grant No. F49620-92-J-0327

Jason L. Speyer
Mechanical, Aerospace and Nuclear Engineering Department
University of California, Los Angeles
Los Angeles, CA 90095

The objective of our efforts was to extend and apply a new adaptive control technique
based on a disturbance attenuation bound. The structure of this new adaptive control
scheme is the result of formulating a disturbance attenuation problem for a particular class of
nonlinear systems whose solution is obtained without any approximation. A global solution
is obtained and must be contrasted with much of the nonlinear Ho, results which assume
that the scheme operates locally about some equilibrium condition.

The class of nonlinearities considered is that of a linear system where the coefficient
matrix of the control is assumed to be a linear function of an unknown parameter. The work
performed on this grant extended this class to include state coefficients matrices linear in
the parameter if the associated state that multiplies this term is measured perfectly.

. To bring these mathematical abstractions to engineering practice, a significant effort was
made to apply this new adaptive control scheme to the development of an adaptive flight
control system for a high angle-of-attack aircraft such as the F-18 HARV (High Angle-of-
attack Research Vehicle). We are just beginning to show performance improvements in the
time response over that of standard adaptive controllers due to an initial reduction in the
control effort associated with those control system parameters that are initially uncertain.

This new adaptive controller involves not only the state and parameter estimates, but also




the pseudo covariance matrix. This new adaptive scheme does require the determination of
the global maxima of a certain function with respect to the uncertain parameters.

Our current results are for a single parameter. As in the F-111 adaptive flight control
system, we focus on estimating the moment coefficient due to elevator deflection. Our
goals are to extend this to multiple parameters and to eliminate the restriction on perfect
information so that all parameters in the system can be included. Our approach to removing
this restriction is to use perturbation theory associated with an assumed small measurement,
uncertainty weighting matrix. Complementary results using perturbation theory are being

pursued on our main AFOSR grant (F49620-91-0077).

1 Introduction

Current adaptive control schemes assume certain equivalence. That is, the structure of
the adaptive controller assumes a parameter identifier in cascade with a controller such as
the linear-quadratic-Gaussian (LQG) controller or multi-step predicted output control. Al-
though the proper approach to adaptive control is based on stochastic control theory, it is
untractable. Even the simplest extension of the LQG problem is unmechanizable. This ex-
tension involves a linear system where the control coefficient matrix is a linear function of an
unknown parameter. If this parameter set is augmented to the original state space, a finite di-
mensional conditional Gaussian estimator is used to reduce this problem to a full information
problem. Nevertheless, the resulting stochastic control problem of minimizing the expected
value of a quadratic performance index is subject to a stochastic vector differential equation
and a Riccati differential equation. To date this problem remains untractable except for
perturbation methods based on small measurement noise spectral densities. This approach
is showing significant improvement and is being developed under our current AFOSR grant.

An alternate, but deterministic, approach is formulated by determining a controller which

bounds a disturbance attenuation function against all admissible measurement and process




disturbances and initial conditions. For the stochastic control problem described above, i.e.
the control coefficient is a linear function of a parameter vector, a disturbance attenuation
controller can be found via a dynamic programming solution [1]. The problem is shown in
[1] to decompose into a controller problem with full information with an associated optimal
return function representing the optimal cost into the future and an estimation problem
with an associated optimal accumulation function representing the optimal cost due to the
control and disturbances from the past. The maximum of the sum of these two functions
with respect to the unknown current state produces the worst case state. A sufficiency
theorem in [2] requires that for a saddle point controller to exist the worst case state must
be a unique global maximum. For this class of disturbance attenuation problem, the global
maximum are shown to be nonunique. However, in [1] it is shown that the resulting control
strategy is still a saddle point strategy since it is proven that the control strategy when there
is not a unique global worst case state is unique. An alternate and direct proof is given in
[3] where the infinite-time results are also presented.

This powerful result forms the basis of a new approach to adaptive control. In the next
section we describe the work performed on this supplemental grant. In the following section
we describe the work that would have been performed if the no cost extension had been

allowed.

2 An Extension of of the Adaptive Controller Based
on Disturbance Attenuation with Application to Air-
craft Flight Control

In the disturbance attenuation adaptive controller of [1,3] only the control coefficient matrix
is a linear function of an uncertain set of parameters. This new adaptive control technique
is extended to include some of the parameters in the state coefficient matrix. To ensure

that the estimator remains finite dimensional, only the parameters of the state coefficient




matrix which multiplies a state element that is perfectly measured are used in the extension
of the new adaptive control law. This generalization allows some reduction in the estimator
dimension, but the worst case state is produced now from maximizing the sum of optimal
return function and the optimal accumulation function subject to a constraint formed by the
perfect measurements. Details of this analysis are given in Appendix A. In the next section,
we discuss further generalization to the partial information case by perturbation methods.

This research supplement is motivated by the need to learn how to implement this adap-
tive controller in important applications such as aircraft flight control systems. To evaluate
controller design a high fidelity nonlinear simulation of the F-18 high angle-of-attack research
vehicle (HARV) was obtained from NASA Dryden. A parameter-robust game theoretic com-
pensator was designed to track pilot inputs in angle-of-attack, sideslip, and stability-axis roll
rate through stick and rudder pedal commands. Zero steady state error in the presence of
step inputs is achieved by using a system of error coordinates which also allows for thrust
vector commands to fade to zero in steady state. Results of this study are given in Appendix
B. This controller and its performance were to be used as a benchmark to compare the results
of the adaptive controller. .

To begin to understand the implementation issues of this new adaptive controller the
longitudinal mode of the F-18 HARV was first controlled. Parameter uncertainty in both the
state and control matrices were considered. In particular, stability derivatives that multiply
the inertial states were used to augment the state vector to be estimated on-line. Since
four unknown parameters were included in the adaptive controller, a search for the global
maximum of the sum of the optimal return function and optimal accumulation function with
respect to these four parameters was not attempted. Rather a possible local worst case state
is obta.ined near the estimated state. The performance of the new adaptive controller was
similar to that of standard adaptive controllers assuming certainty equivalence. It appears

that this approach to adaptive control is equivalent to nonlinear H,, controllers which assume




local behavior near an equilibrium point.

To obtain dramatic performance, it appeared that the global aspects of the controller
was to be explored. The parameter set was reduced to a scalar, the moment coefficient due
to elevator deflection. For certain initial conditions remarkable performance is obtained over
- current adaptive controllers. In regimes where the scalar parameter is quite unknown the
control emphasizes thrust vectoring and reduces the elevator deﬂect.ion to be almost zero. As
more information is obtained the controller begins to use more elevator deflection and less
thrust vectoring which is eventually faded to zero. This is to be contrasted with standard
adaptive controllers in which substantial elevator deflection is used early even though the
parameter is the wrong sign. Therefore, the initial response is in the wrong direction. The
inherent conservative, but intelligent, performance of the new controller is associated with
the two worst case states in which usually only one is a global maximum. In the beginning
the global worst case state dictates a conservative policy where the elevator deflection is
made small and the thrust vectoring dominates the response. At some time, say t., both
worst case states produce identical cost. Here, there is a switch from the conservative policy
to one similar to that of the standard adaptive controller. Note that the controls do remain
continuous, even at t.. Our current study evaluating the performance of this new adaptive

controller for flight control is described in detail in Appendix C.

3 Future Work in the Adaptive Disturbance Attenua-
tion Controller and It’s Application

Based upon the encouraging performance of the new adaptive flight controller described
in Appendix C, the following research directions are proposed. To generalize the current
procedure to include partial information and parameter uncertainty in both the state and
control coefficient matrices, a perturbation methodology is suggested. Here, two approaches

are possible. Either the measurement uncertainty weighting in the disturbance attenuation




function could be assumed small and, therefore, an expansion parameter, or the coefficient
of the parameter in the state coefficient matrix could be assumed small and, therefore, an
expansion parameter. This second approach in a more general setting is being explored in
our main current AFOSR grant. Our current results are given in Appendix D. In either
approach our current results [1,3,Appendix A] form the zeroth-order solution. As shown in
Appendix D, additional higher-order terms remain finite-dimensional.

Application of this new controller has been shown to produce dramatic and intelligent
performance for one parameter. Efficient numerical methods are being sought which not
only produce the global maximum, but keeps track of all the local maximum to determine
when one maximum value moves past another inducing a change in strategy, but keeping
the control continuous.

As shown in Appendix C, the new adaptive controller is a rather cautious controller.
When the uncertainty in the coefficient of the elevator deflection is high, emphasis is placed
on the thrust vectoring. When the parameter becomes better known, the elevator is used
more, and in steady state the thrust vectoring is faded out. This is required due to the
deterioration of the thrust vectoring paddles used on the F-18 HARV. The strategy of this
new adaptive control law is highly governed by not only the state and parametric estimates,
but their associated pseudo error variance. This is unique among implementable adaptive
controllers. Therefore, our future efforts are directed to understanding the behavior of this
new adaptive technique through examples such as the adaptive flight controller of the F-18
HARV, extensions to multiple uncertain parameters, and extensions to the theory to include
constraints on the parameter uncertainties. This last item has the difficulty that we wish
to preserve the saddle point structure since the controller is, in a sense, certainly equivalent
and therefore, easier to compute on-line. Otherwise, one is left with the difficult problem of

finding a minimax controller.

I



4 Conclusion

This supplement to our AFOSR grant has been important in bring to practice an impor-
tant new adaptive control law conceived and developed from a theoretical viewpoint under
AFOSR sponsorship. Charles Dhillon brings to this research project a strong background
and interest in the underlying flight control problem and in the application and extension
of this new adaptive control law to aircraft and missile flight control systems. Our progress
has not been as rapid as desirable, but we have kept our sight squarely on the need to bring

important theory to engineering practice, an activity usually overlooked.
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Abstract

The purpose of this paper is to present extensions to robust and adap-
tive control design techniques based on disturbance attenuation to a class
of systems which have a portion of the state space which is measured per-
fectly (without additive noise) in addition to a set of measurements which
are corrupted by noise. For the robust controller, a system results which
is similar to that obtained from a Parameter Robust Game Theoretic Syn-
thesis (PRGTS), with a reduction in the order of the state estimator. In
the adaptive case, the teclmiques presented allow for the extension of the
estimator to include plant state coefficients which multiply states which
are measured perfectly.

Keywords: Robust Adaptive Control, Disturbance Attenuation, Dy-
namic Programming.

1 Introduction

Several approaches to controlling dynamic systems with uncertain parameters
have been developed in recent years (1, 2, 3, 4].The work presented in this paper
provides extensions to two such approaches to control of uncertain systems to
a class of systems which contains a combination of noisy and perfect measure-
ments. First, a compensator which is robust to changes in system parameters is
developed for this class of systems in a manner similar to [2, 4] which results in a

* Research Assistant
tProfessor, Mechanical, Aerospace and Nuclear Engineering Department, UCLA




reduced order robust compensator. Secondly, the work of [1] is extended to this
class of systems, which results in a compensator which is adaptive to uncertain
parameter multiplying perfectly measured states as well as the controls.

In [4], a controller was developed using a game theoretical approach to the
solution of a disturbance attenuation problem which, when combined with the
use of an internal feedback loop (IFL) decompasition to represent the uncertain-
ties in the coefficients of the linear system, essentially produced a control which
is robust to the parameter variations within the model. By extending these
results to the class of systems considered in this paper, the order of the com-
pensator is reduced by considering the perfectly measured states in a manner
similar to that developed in [5).

In (1], a similar disturbance attenuation problemn was formulated, but with an
augmented system which included parameter uncertainties in coefficients mul-
tiplying the controls. The disturbance attenuation problem for the augmented
system was then solved using a dynamic programming approach, similar to that
described in [2] to yield an adaptive compensator structure which included an
estimator for determining values of the state and control coefficient parameters,
a controller as a function of the state but dependent on the parameter values,
and a connection condition which linked the two. In the connection condition,
the sum of the optimal return function associated with the control problem and
the optimal accunmilation function associated with the estimation problem re-
sulting from the decomposition of the dynamic programming solution process is
maximized with respect to the crrent state, i.e. the worst case state. For this
class of adaptive control problems, in contrast to the results in [2, 3], the adap-
tive compensator structure is based on the results of {1] where the restrictive
assumption that the worst case state bé a singleton is not required.

In both of these approaches [1, 4], it was assumed that all measurements
received were corrupted by an external disturbance. In some systems, however,
it may arise that a subset of the measurenients may be known perfectly. (or at
least close enongh to be modeled as such). One such case could be the dynamics
of an airplane, where body angular rates are measured very accurately, but
measurements of state variables such as angle-of-attack and sideslip are not
nearly as easily or precisely measured.

In sucht a case, where a portion of the measurements may contain noise
while another does not, it is possible to extend the methods described above. In
the case of the robust controller, by assuming certain measurements are known
exactly, a compensator of reduced order may be designed for the system. In the
case of the adaptive approach, an additional set of parameters, those multiplying
the states which are measured perfectly, can be included in the augmented state
vector and subsequently be estimated on-line. The results presented in this
paper will provide detail on these extensions.




2 Dynamic System

The class of system under consideration is a linear system with uncertain co-
efficients multiplying states and controls and state dynamics which are forced
by a random disturbance. Additionally, the class of systems considered has a
subset of the state space which is measured perfectly in addition to a set of
measurements which are corrupted by noise. This system can be written in the
following form: .

i = A(e)z+B(f)u+Tw (1)
zy = Hiz+v (2)
29 = HQ.’C (3)

Where a € R* and 8 € R' are used to designate uncertain parameters in the
state and control coefficient matrices.

Two approaches will be considered in determining a control strategy for this
system. The first approach is to design the controller so that it is robust to vari-
ations in the parameters represented by a and 8 by using an internal feedback
loop (IFL) decomposition to incude the parameter wicertainty in the design
process, so that the resulting system is in a form consistent with the approach
of [4]. Secondly, a controller is considered which is adaptive to the parameters
a and B. In order to pose the problem in a manner which is consistent with the
theory for each approach, we can first rewrite the dynamic equations of motion
in a form more familiar to each method.

2.1 Dynamic System for Reduced Order Robust Controller

In the case of the robust approach, we can write the system state and control
coefficient matrices, A and B, in tenns of a nominal plant A¢ and By, and
parameter dependent perturbation AA and AB:

x = (Ao+AA(a))x+(Bp+AB(B)u+Tw (4)
where
AA = DL,(a)E
AB = FL,(8)G

Using an IFL decomposition of AA and AB, we include the parameter uncer-
tainties as a fictitious disturbance, so that the system which we will be analyzing
has the standard form:

# = Agx + Bou + T (5)




where @ includes external disturbances as well as the fictitious disturbances
introduced by the decomposition of the parameter uncertainties and I' reflects
how these disturbances are introduced into the system.

2.2 Dynamic System for Adaptive Controller with Some
State Coeflicients Estimated

In order to apply and extend the theory developed in [1] to the class of systems
being considered, we first must write the dynamic equations of motion in a form
which is consistent with its development. To do this, we can apply a similarity
transformation to the original system, if necessary, to obtain a system which is
partitioned into the states which are included in the set of perfect measurements
and those which are not. This system can then be written in the form:

(2] - (A ] [m]+ (B8 ]+ [R]e ©
2] - [% Iﬂ[ﬁ]ﬂ“[ﬁ]v ()

where, the parameter uncertainties in the matrices Ayg (a), A2z (a), By (8) and
B, (B) include parameter uncertainties in the form:

Ap(a) = (A12)0+i1(1412)jaj (8)
J=

Axp(a) = (A22)0+i1(1422)jaj (9
j=

By(p) = (Bl)0+z';(Bl)jﬁj (10)
i=

By(B) = (32)0+zl:l(32)jﬁj (11)
=

We then can form an augmented state vector, £ = [ =]z aT g7 ]T, whose
dynamics are defined by the system:

€ = A+ Beu+Tew (12)
2y = Hif+v (13)
22 = Hy§ (14)

wliere




A (An)o {(A12)122 (‘412)'&2} }(Bx)xu (Bx):u}

A= | An (An)o { (A22)1z2 -~ (Az)ezo (B2)iv .-+ (Ba)iu
€71 o 0 0 0
0 0 0 0
‘and
(B1)o r,
(B2)o | Y
B = 0 Te= 0
0 0

In this formulation, the perfect measurements 2, act as an additional known
input to the system. Thus, they could eflectively be considered as part of an
augmented input vector i, such that the parameter dependence is then only
in the augmented input matrix. This then. generalizes the class of systems
considered in [1] and is consistent with the theory presented therein.

3 The Disturbance Attenuation Problem

For this system, a disturbance attennation function is formed as in {1], which is
essentially the ratio of normns of performance outputs over disturbance inputs.
The problem can be written as:

2
D= <1 950 (15)

where the measures of performance outputs, ﬂy"2 and |]w]|2 are defined as

2 2 “ 2 2
I = W e, + [ (el + o) o (16)
ty
2 2
ol = WO+ [ (olos + i) ar (17)
0
where, in the case of the non-auginented system for the robust controller, £ is

simply z.
This disturbance attenuation function can then be converted to a perfor-
mance index, given by (18), which gives rise to a differential game problem.

7= 3 {wr-Jir) <o (18)

5




The basic idea, then, is to find the control, u, which minimizes the distur-
bance attenuation function subject to the worst case maximizing disturbance
inputs provided by initial conditions, z(0)), parameter uncertainty (a, 8), state
noise w, and measurement noise v.

4 Dynamic Programming Solution

The approach taken in finding the solution to the disturbance attenuation prob-
lem is to use a dynamic programming technique to separate the problem into
two separate problems. The first, a control subproblem, defines an optimal re-
turn function, ¥ (¢,,&) as in {1]. The second, a filtering subproblem, defines
an optimal accumulation function, T (&). The dynamic programming problem,
then, is to find the values of state and parameters, Z, &, 8 such that:

T (#, @, B) + ¥ (¢, @, B) 2 X (z¢, &, B) + ¥ (2, @, B) (19)

4.1 Application to Reduced Order Robust Controller

In applying this technique to the reduced order robust controller, we note that
there is no direct parameter dependence in the performance index and optimal
return and accmlation fumctions. This is due to the fact that, by virtue of
the problem formulation, this parameter dependence is essentially hidden in the
disturbance input, w.

4.1.1 The Control Subproblem

The control subproblem is formulated as in (1], with a performance index as
shown in (20).

Lt = 50k,

ty 1
+ [ ey + Il = Gl + ook} (20)
t

Taking v:’ =0, as in [1], and adding the zero quantity

l t ll LT, 1 T ty
-2-/; -d—T-[.r I'l.z:](lr—--z-[.c Iz),

to (20), the optimal control and state disturbance and a Riccati differential
equation similar to that obtained in [1] are determined by substituting and
completing squares.

6




-l = ATO+MNA+Q-1(BR™'BT —erwrT)n

u.=—-R BTz (22)
w, = 6WT' Tz (23)

Substituting these relationships back into the performance index (20), an
expression for an optimal return function is obtained. This optimal return
function is then given by:

Y{xr,) = %zx{ﬂ(t)m, (24)

4.1.2 The Filtering Subproblem

Next, the filtering subproblem is considered. The approach taken in solving this
portion of the problem is essentially the same as that outlined in [5}. Considering
only the problem from initial time 0 to current time t, and making use of the
measurement equation (2), the performance index for this portion of the problem
can be written as:

1, 1 -
0, = S{-gll=(0)~ 2 [
t
. 1 -
+ [ ol + Tl = GOl + e = -0l (25)

Adjoining the dynamics (1) and perfect measurements (3) to the performance
index with multipliers A and i, (25) can be rewritten as:

Jf[(),t] = Js0,1] ;
t
—%{ / T (Az + Bu + Tw — &) + T (22 — Haz)Jdr}
0

Then, integrating by parts and solving for first order necessary conditions for
an extremum Yyield the relations:

z(0) = #o— Po(M0)+ HT p(0) (26)
A = —ATA—(HTV-'H, -0Q)z — ATHI u+HIV~'z; (27)
wy = —-WIT(A+HJp) (28)

First, the initial conditions are considered. By combining the relations (26)
and z2(0) = Hax(0), an expression for j(0) is obtained.




1(0) = ‘—(HQP()HzT)-l(ZQ(O) — Hyito + Ha PoA(0)) (29)

Substituting this expression back into (26), we obtain the relationship:

2(04) = 3(04) = PO+)A(04) (30)
E(0+) = &0+ PoHT (HyPoHT) Y (29(0) — Haio) (31)
P(O0+) = Py —-Png'(HQPng‘)—lepo (32)

This represents the state, costate, state estimate, and Riceati solution at the
time when the first measurement, z,(0), is received. An important observation
is that

HQ!&(()—{-) = 32(())
H,P(0+)=0 PO+)HT =0 H,P(0+)HT =0

That is to say, once the first measurement is obtained, that portion of the state
contained in the perfect ineasnrements, z,, is known perfectly. Also, the Riccati
solution P(-) becomes singular once measurements are taken.

To obtain an expression for . for time ¢ > 0, we can combine (1) and (28)
with the constraint zy(-) = Hyx(-), which yields the expression:

1) = —(H,TWITHT )Y 2,() = HolAx(-) + Bu(-) = TWTTA()]}  (33)

This relationship, along with (28) can then be substituted back into (1) and
(27) to give a system of differential equations for x and A.

3 - A ~-TWIT [ «
A T [ —(ATR'H-0Q) -AT [
+| _ariyns |+ | TR ] (34)

where the quantities above are represented by:

Ry = H,TWITHT y=HyA  G=TWITHTR;!
A=[I-GH)A B=|I-GH)B TWIT = [l - GH,JrwrT

T H, = |V 9 1 a
=[] 2-[0 2] ==[3]

Next, as in [4], differential equations for the propagation of the state estimate
Z(-) and Riceati solution P(-) are obtained by differentiating the relationship

3]




z(t) = 2(t) = P)A(t) (35)

This results in the differential equations:

z = (A+6PQ)i+(B-PATR;'H,B)u
+PHTR (3 - H\%)+ G2, (36)

P = AP+ PAT - P(HTR™'H - 0Q)P + TWrT
PO) = P (37)
It should be noted that the differential equation which governs the dynamics
of the state estiinate, £, contains the derivative of the perfect measurements, z,.
For the sake of implementation, this is not desirable, but can easily be remedied
by defining a transformed state estimate which contains only the measurement

itself, zo [5]. The estimator can then be implemented by using the transforma-
tion

F=i— (PﬁzTR;‘ + G) £ (38)
The next step is to determine the optimal accumulation function. To do

this, we first substitute the relationships (28) and (33) into (25) and add the
Zero quantity

1 T t t ll T
S5 (TP /o —NTPAJr)
Then, the performance index, (25) reduces to
0. = =3P+ L [ 16+ bl
S5 20 2 J, e R
1 . 1, . .
—glla = Hyilf} -, - gllé2 — Ha(AZ + B'a)""}z;:]dT (39)

Next, we would like to express this performance index in teris of the error
between actual and estimated state, e(-) = z(-) - £(-). Care must be taken,
since P(-) is singular for all t > 0. First, we define a transformed error, &(-):

=[&]-[%]: X




where Hy is defined to span the portion of the state space not contained in the
perfect measurements z;(-). Also, a transformed costate A(-) is defined such
that

T Tr s
_{Ho| 5_1 Ho Ao :
[ ]a-[E] (5] @
Then, using these relationships, we can write

ATPa ég‘(Ho.PHg‘)—léo

= (z—&)TH (HoPH] ) 'Ho(x - %) (42)

Substituting back into the performance index, we then obtain the desired ex-
pression for the optimal accumulation function:

. 1 -
T(x) = glu, zq, 33) — ,2-(-)J HI(HoPHT) 'Hoe (43)
where
. . Voo 1 ATy ~1 .
g(u,z,3) = 5['r Q] - ;2—0-(::1 - H12)' V™ (z; — Hi%)
1 R Be1rs .
—-é—a-l?:-z - Hy(Ae + B1L)]TR2 1[,7:2 - Hy(A% + Bu)]
901 Ym0 = N2z = Hadollfyy, pyry-s (44)

4.1.3 The Connection Condition

Having determined expressions for the optimal return and optimal accumulation
functions, we then must determine the conmection conditions which bring to-
gether the two solutions. The connection condition, then, is obtained similarly
to the method presented in [1], from the constrained relationship

max [‘I’ (ce,t) + T (e, t) + ‘;l;[l-(t)T (22(t) — Hox, )] (45)

which is solved by considering

avr\T rar\T 1
(57;) +('(:)—r—t) —ZH;P}L(t)=O

1 SO !
=Ilr - -{;H{(HOPHS")“Ho(x —-z) - aH;r;L(t) (46)
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The desired relationship between the optimal state and state estimate, then, is
determined by combining the above with the constraint relation z;(t) = Haz(t)
and solving the matrix equation:

(HZ (HoP@HT) ™ Ho-601(t)) HT [ z ] - [ HE (HoP(WHT) ™ Hot ] (47)
H2 0 I %2 )

Combining this relationship with the optimal control (22) and a transformed
version of the reduced order optiinal state estimate (3G), we can then construct
a reduced order compensator for the system.

Furthermore, by examining the second variation in the manifold of the con-
straint zg = Hox, we can obtain an expression for a spectral radius condition
for the reduced order compensator. This is then given by:

Pt (f’ - an) PL>0 (48)

where

oo
]

H (HoP)HT) ™" Ho
PL = I-HT(H,HT) ' H,

~2

Note, by the definition of Hy, we have HoHY = HoHT = 0, so we can rewrite
the above as

P—oPinIPL >0 (49)

4.2 Application to Adaptive Controller with Some State
Coefficients Estimated

In applying the dynamic prograimming technique to the augmented system (12),
we first rewrite the performance index to reflect the augmented state vector, as
in (50).

-2 t
7= {neeony, -3 le@=aff+ [ ity + 1ot - 5 (rotly-s + o) | ar} 0

p—1
PO

where, to reflect the extended dynamic system, Q and Q s are defined as

i Q; 0 0 i Q 00
Qr=] 0 00 g=|0 0 0
0 00 0 0 0

We can then break the problem into a separate control and filtering problem,
and determnine the connection condition which joins the two.

11
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4.2.1 The Control Subproblem

The control subproblem is formulated as in {1], with a perforinance index as
shown in (51).

.1 qts 1 s
wttts) = (it + [ [betly + W= 5 (botly-s + ol ) o} 50

Taking v;’ =0, as in [1], and adding the zero quantity

t
%/g , }% [T (r)N(a, B, 7) (7)) dT — % [T () (a8, )= (')]:I

to (51), the optimal control and state disturbance and a Riccati differential
equation similar to that obtained in [1] are determined by substituting and
completing squares.

(e, 8,7)= ATH(a,8,7)+ 1 (a,B,7)A+Q -
M(c, B,7) (BR™'BT —TWIT) (0, B8,7)  (52)
t<7<liy
N{(c,B,t7) = Qs

u(t) = —R™'BTI (¢, B, 1) x (t) (53)

w(t) = 6WT T (a, B, 1) x (1) (54)

Substituting these relationships back into the performance index (51), an
expression for an optimal return function is obtained. This optimal return
function is then given by:

¥ (2,0, ,) = 32711 (0, B, )2 (55)

4.2.2 The Filtering Subproblem

Next, the filtering subproblem is considered. The approach taken in solving this
portion of the problem is essentially the same as that outlined in {5]. Considering
only the problem from initial time 0 to current time ¢, and making use of the
measurement equation (7), the performance index for this portion of the problemn
can be written as:

12




- N2 ¢
soa=3{-5le@ =&l + [ [ierd + 1ot 3 (tollos + s - Hicll) |} o) -

Adjoining the dynamic constraints to the performance index with multipliers A
and ji, J; can then be written as

T (0,8 = J; [0, 8] - % { /o ' [T (Aet + Be + Tew - €) +iT (22— Hs6)] df}

Then, integrating the ji terms by parts and solving for first order necessary
conditions for an extremun yield the relations:

£(0) = €o — Po (A (0) + HT (1)) (57)

j(0) = — (HyPoHT) ™ [22 (0) — Hao + HaPo) (o)] (58)
A=-ATA— (HIV'H, - 0Q) 6 - ATH] p - H{ V™2 (59)
w=-WIT (A + HI 1) (60)

Combining the constraint z; (0) = Hy€ (0) with the relationship obtained for
(), we get an expression for the initial conditions upon receiving the first
measurement, z, (0)

E(0+) = E(0+4) = P (0+) A (0+) (61)

where
£(0+) = fo+ RHT (HaPuH])™ (22 (0) - Habo) (©2)
P4)= Py~ PonT (HzPngT)—l H,P, (63)

An important result of these relationships is that upon receiving the first “per-
fect” measurement, the estimate of the perfectly measured states is then simply
29, and the matrix P becomes singular, with null space corresponding to the
portion of the state space which is measured perfectly. That is,

13




H,€ (0+) = 2, (0)
H.P(0+)=0 PO+)Hf =0 H,P(0+)H] =0

Next, to obtain an expression for s for time t > 0, we consider

g = Hzé = H, [A{f -+ Bfu - l‘gW[‘{ ()‘ + H;rll)] (64)
Then,

-1 .
p(-) = — (HaTeWTTHT) ™" [ = Ha (AgE + Beu —T¢WI )] (65)
This then results in a system of differential equations given by

3 _ Ae -TeWr? €

A T | -(HTRA-0Q) -AT A
BE ) G 21 X
*[—H{ﬁs*m&]“*[W* ﬁ;R;'Hz'z]““"

with the matrices above defined as

Ry = H,T¢WTTH] Hy=H,A;,  G=T¢WI{H]R;'
A¢=[I-GHy))Ag Be=I-GHyBg T¢WIET = (I — GHy|T(WI]

| Hi 5 V 0
H—[}-{z] R‘[o RQ]

Then, differentiating the relationship

E()=£() = P(t)A() (67)

we obtain differential relations for an estimator and Riccati equation given by

€ = (A¢+0PQ)é+ (Be— PATR;'HyBe)u
+PHTV (2, - H,é) + PATR;! (éz - 1‘125‘) +Gi (68

P = AP+ PAT-P(ATRH -6Q)P+TWre™ (69)
P(0)= P(0+)
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As in the case of the robust controller design, it is desirable to introduce a
transformation which eliminates the measurement derivative, z; from the esti-
mator equation. This transformation is given for this system by

€=(—(PAIR;'+G) S . (70)

The next step is to determine the optimal accumulation function. To do
this, we first substitute the relationships obtained above into J; and add the
Zero quantity:

{ [XTRA] - / [ATPA] d-r} (71)

Then, we can rewrite Jy as

Jelog) = —EAT(t)P(t)z\(t)-i-

3 [ [Vl + wa -

Next, we define the error between auginented state and estimate as € = £ —§,
and define

bl - - (a6 20

€o Hy
1@ j_| H
=l 1= nu |e (72)
€s Hp
where
Ho=[0 0 Ly 0] Hg=[0 0 0 I
Also, the nmltiplier X can be written as
Ho " Ho 17T %
_ H2 3 _ H2 XQ
A=ty | A= B i (73)
Hg Hg Ag
Combining terms, we can then write
-1
Tpy — T (y.ppT\ -
NP = & (HPHT)
AT _ -1 .
= (€-&) BT (HePHT)™ He(e-€) (74)
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where & = Hge, and

-.E_=

hl gbl 8:
x
|
=

The optinal accumulation function, then, can be written as

. 1
T(6) = glu, 21,52) — 57 See (73)

where S (t) is defined as

S, =HT (HgPHET)—l H;

and

1 oz 1 . N
9(u,zy,23) = §[§TQ.E] - 55(21 - H\&)TV™Y(2; — Hi)

1 - ¢ ) — 3 -
’727;[32 ~ Hy(Ac€ + Beu)) TRy 29 — Ha(Agf + Beu))

2y — Hzéo (76)

2
9(is im0 = l “(H,PHT)"
2

4.2.3 The Connection Condition

Having determined expressions for the optimal return and accuimlation fune-
tions, we must then determine the commection conditions which join the two
solutions. As in [1], we first partition S (¢) as

Sa' Szo Sxﬁ
S(t)= s,;,, s; Sap
~x8 Soﬁ Sﬁ
Then, as in the case of the reduced order robust compensator, we adjoin the

constraint zg = Hy€. Performing the optimization with respect to the state
yields:

T T
(‘N') +(.‘7_T_) _%H{p=() (77)

5:;:—, f):n,

= 11, ()~ 5 [Se (o = 20) + Sva (= &)+ Su (8- B)] - 5 HE
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This relationship, combined with the constraint of the perfect measurements,
yields the state connection condition.
Next, solving for the state coeflicient parameter connection condition yields

(x50 = 507 Sea+ (= 87 S0t (8- B) ST = 2aT TPy (1g)

The control coefficient parameter connection condition is given by

. . AT 0 ~0l{a,
(0207 Sus + (o= 7 Sup + (8- B) 5= 5T 2= Ba, (ag
The connection conditions ¢an then be used to provide the link between the
estimation problem and the control problem.

5 Conclusions

The results presented in this paper extend the existing results in robust [2, 4]
and adaptive [1] control based on disturbance continuation to a class of problems
where a combination of perfect and imperfect state information is available. In
the case of the robust controller, this allows for the reduction of the required
order of the compensator in such systems. This may be of practical impor-
tance in applications where some measurements are known nearly exactly, and
compensator size is of concern.

In the adaptive case, the approach used in this paper allows for the esti-
mation of parameters multiplying perfectly measured states, which may help to
increase perforimance in some uncertain systems with some measurements which
are known exactly.
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Parameter Robust Game Theoretic Synthesis for the F-18 HARV

Charles H. Dillon* and Jason L. Speyert
University of California, Los Angeles

Abstract

A parameter-robust game theoretic
compensator has been designed for the F-18 High

"Angle-of-attack Research Vehicle (HARV).

Modelling uncertainties due to parameter variations in
the aircraft dynamics over varying flight conditions

are included in the design process by using a internal

feedback loop (IFL) decomposition and incorporating
the resulting state space into a disturbance attenuation
problem. The compensator is designed to track pilot
inpufs in angle-of-attack, sideslip, and stability-axis
roll rate through stick and rudder pedal commands.
Zero steady state error in the presence of step inputs
is achieved by using a system of error coordinates
which also allows for thrust vector commands to fade

to zero in steady state. Linear and nonlinear

simulation results are presented.

1. _Introduction

-
-

_The effort to date in the development of a - -

parameter-robust controller for the F-18 high angle-
of-attack research vehicle (HARV) using game

- theoretic controllers [1] has concentrated mainly on

compensator design and evaluation. The design
objective was to create a compensator capable of
tracking state command inputs in the presence of
uncertain dynamics at high angle-of-attack.
Additionally, physical limitations of the thrust
vectoring vanes dictated that the design be such that
thrust vectoring be used mainly for enhancement of
transient response, with aerodynamic controls being
used in steady state. The approach taken in designing
the control system was a linear design technique based

-on game disturbance attenuation [1] with parameter
uncertainty included in the design process as a

fictitious disturbance via an internal feedback loop
(IFL) decomposition [2]. As with other linear

" controllers, this technique utilizes a linearized model
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of the aircraft about a particular flight condition. The
game theoretic synthesis essentially produces a
controller which reduces the sensitivity of the closed
loop system to disturbances. By including parameter
uncertainty as a fictitious disturbance, the sensmvnty
of the closed loop system to parameter variations is
reduced, and this decomposition helps to extend the
region in which the resulting linear control gains can
be used. Therefore, by extending the usable region
about each design point, fewer design points are

‘required, thus reducing the number of gains to be

stored in the final implementation of the controller.

The main analysxs tool used in generating
linearized models, obtaining estimates of the
parameter uncertainties, and evaluating controller

- performance has been the Dryden F-18 HARV
mnonlinear batch simulation. This simulation provides

a detailed nonlinear model of the aircraft, including an

" aerodynamic database containing data for "clean"

(angle-of-attack less than 40 degrees), high alpha
(angle-of-attack between 40 and 90 degrees), power
approach and takeoff flight regimes. The simulation
is currently hosted on a SUN workstation at UCLA.
Capability for using interchangeable control laws,

- -through a simulation control law interface provided
by NASA Dryden exists within the simulation and -

has been used in testing a FORTRAN
implementation of the linear controller with the full
nonlinear aircraft dynamics.

The full nonlinear equations of motion for
the F-18 HARV are given below [3,4]. The.
moments, denoted L, M, and N, and the forces,
denoted Xy, Yy, and Z,,, where the subscript w
indicates a wind axis reference frame, have
components due to gravitation, acrodynamics, and

. engine thrust. These forces and moments are strongly

dependent on the values of state and control
deflections. The vehicle mass properties are reflected
in the inertia tensor, J, and vehicle mass, m. Aircraft
velocity is givcn by V and body angular rates by p, ¢,

~ and r. The matrix T}g is a coordinate transformation

from body to an inertial reference frame, which is a
function of the Euler angles ¢, 6, and y. The matrix
Tpw is a coordinate transformation from wind to
body axes, which is a function of angle-of-attack and
sideslip. The rates pg and rg indicate stability axis




roll and yaw rates, respectively. The dynamics are
given as:

1 N EL TP P
gi=I"\IMm|-|a|xI| ¢
r r r
N
1 1 sing tan8 cos¢ran '
¢ rl
& 8|= 0 cos¢d - sing q
r
vy 0 sing €os¢
cos8 cos@
: Zy
@=q-pstanf+—"2
q-ps tanf e
a_ Y,
=¥ _r
B el
=%Xw
m
x] 14
y |=TBTpw| o
.h_ 0
[p,.' =[ cose sina ][p]
sl \_sine coser JLT

For the controller design, a linearized model
was extracted from the nonlinear vehicle dynamics at

a particular flight condition. A 5-state system was

chosen to represént the dynamics of interest in
controller design which included angle-of-attack «,,
sideslip B, and roll, pitch and yaw body angular rates
(p, q, r).  Control surfaces, a total of 8, included

leading and trailing edge flaps (SLgF, S7EF), rudder

(SRDR), differential and collective horizontal tail
~ (8H7), differential aileron (8477), and pitch and yaw
thrust vectoring. The linearized model then had the
form as shown below. This model was generated
using the linearization routine in the nonlinear batch
simulation at a given trim condition. The condition
selected for controller design was at an angle-of-attack
of 50 degrees and an altitude of 25000 ft. The states
of the linearized model, then, represent perturbations
of the nonlinear model states about their nominal
trim values. Actuator dynamics were not included in
the state space used for design. The linear dynamlml
- system is then represented by:

x=Ax+ Bu
x=[a B p.a. AT

u=[8ur,, SLEF, OrEFp O1VCy OAlLe BT, SRDRy B1vCy]

¢)]

where the A and B matrices contain the linearized
force and moment coefficients at the given flight
condition.

. A vital part of the controller design was in
determination of the model uncertainty for use in the
synthesis procedure. To accomplish this, several trim

conditions about the nominal were selected and linear .

models were generated at these points. Linear model

_ coefficients were then compared at the varying flight

conditions to determine which coefficients represented

"the greatest sources of uncertainty. Upon

examination of these variations, it was found that

_ many of the coefficients varied in magnitude over the

)

ranges considered, but some varied in sign as well.
The state coefficients that scemed to exhibit the °
greatest amount of uncertainty were Lg, Mg, and Ng.
The control coefficients which varied the most
significantly were Y54y1,. YouT,» LORDRy 204
N 531-,,.' A sample of the variations in these
coefficients is shown in Figs. 1-6.

. ompensato esi and
Implementation
esf ate ace fo
- Compensator Design

The goal in designing the compensator for
the linearized dynamic system was to track state
command inputs such that steady state errors due to
step inputs would go to zero. This was accomplished
by using a system of error coordinates, e = x —- X,
where x, is the input vector step command. By
differentiating the error coordinates, the resulting state
space is a linear system having the derivative of the
control surface deflections as a controlling input,
which decays to zero in steady state in the presence of
step commands [5,6]. Also, it was desired that the
thrust vector control commands be driven to zero in
steady state to avoid damaging the thrust vectoring
control vanes. This was accomplished by defining as
a state a subset of the controls, v; = Byu, where Bw
is defined such that v; = [6TvCp, STvcylT. The
resulting linear state equations were then given by:

a] [0 107, [0
éz=0A0[¢2]"‘Bi‘
wl Loool™ Ls,

A)

To model parameter variations in the
linearized state space, an intemal feedback loop (IFL)




decomposition was used {2,7). This decomposition is
represented by the system :

ze=[eTefof)
Xe=(Ao+ 4A) x. +(Bo+ 4B)u (4
AA=DLJe)E AB=FLye)G

The matrices La(€) and Lp(€) contain functions which
describe the form of the parameter variations, with £
in this case representing uncertainty in the linearized
state and control coefficients.. By decomposing the

_parameter variations as such, the system can be
rewritten in a form where the parameter variations act

“as fictitious disturbances to the nominal system.
This resulting system is then written as:

=on¢+Bol.l+m

Xe
e[
w=[ W1] [La(e) 0 ]
wzr=[DoF]Lb(£)

)

where I' is a new disturbance input matrix which
includes the ficticious disturbances representing
parameter uncertainties, y; is an output vector
associated with the parameter uncertainty and w is
oonsidered as the disturbance vector. _

3.2 The Disturbance Attenuation Problem

Once the system has been written in the
above form, a controller can be designed which
reduces the sensitivity of the closed loop system to
parameter variations, acting as disturbances to the
nominal linearized system. This is done by first
oonstmctmg a dxsturbance attenuation function, which
is essentially the ratio of desired performance outputs
to disturbance inputs. For all admissible
disturbances, a controller must then be found which
bounds this function:

I (ﬂy7y+y1y1)dr/1 wTwdt|< 72 (6)

weLz

The vector y represents a linear combination of states

and controls to be weighted quadratically to attain a
desired level of performance and p is a scalar which is
used to adjust the relative weighting between -
performance and sensitivity. The performance output
y is represented by:

SHAML

The disturbance attenuation problem can
then be converted to a differential game problem with
a quadratic performance index given by:

Xuwty)= I GTy+ )'IYI"'YzWTW)d‘ @)

The solution of this problem, as presented in [1] is
'obtained by allowing final time to extend to infinity,
and then solving the resulting algebraic Riccati
equation (ARE):

AT+ Ay -TT 303-135--12-17'7' m+0=0
4
0=pCTc+ETE
R=pClC,+GTG

This algebraic Riccati equation, however,
has a sign indefinite quadratic term. The parameter ¥
must be adjusted until a solution exists. As gamma
extends to infinity, this becomes equivalent to the
standard linear quadratic regulator problem. The
resultmg controller obtained by solving the ARE,

" then, is a linear. combmauon of the states of. the

form:
\ i=-RIBJTx (10

For the error coordinate system, this results
in the derivative of the control being a function of the
state errors, their derivatives, and the thrust vector
commands. The control, then, results in a linear’
combination of the error, the integral of the error, and
the integral of the thrust vector commands.

o ro
u=-[ K, K. Ky ] “ el ef ]w’] (11)

The resulting compensator is essentially a

_ pmporuonal plus integral system. A block dxagram

of the implementation of the above controller is
shown in Figure 7. State command inputs are
obtained as a function of pilot longitudinal and lateral

.stick and rudder pedal inputs. The baseline

implementation commands angle-of-attack as a
function of longitudinal stick, stability axis roll rate
as a function of longitudinal stick, and sideslip as a
function of rudder pedal. This combination was

©




selected to be somewhat consistent with the baseline
Research Flight Control System [8]. It should be
noted, however, that any combination of the 5 states
may be commanded by combinations of these pilot
inputs if desired. For example, a pitch rate command
system would be just as easily implemented, as the
baseline implementation simply uses zero as the
commanded pitch rate. A first order prefilter was
added with natural frequency of 5 rad/s to effectively
limit the bandwidth of command inputs so as to avoid
actuator rate saturation.

The selection of the state and control
weightings C and C7 was made such that reasonably
fast step response to command inputs could be
achieved without causing actuator saturation. A
baseline controller was first designed without
including uncertainty in order to determine a

. reasonable set of state and control weightings to be

used. Once these were determined, the IFL
decomposmon was used to include uncertainty effects
in the controller design. The parameters p and y were

“adjusted accordingly to produce a controller which
bounds the associated disturbance attenuation function
and provides a reasonably good balance between
system performance and parameter sensitivity.

¢, _Simulation_Result

In order to evaluate the controller design,

simulations were performed using both the linearized

model and the full nonlinear batch simulation model.
- To generate nonlinear simulation results, the
controller was implemented as a FORTRAN
subroutine and connected to the batch simulation via

the control law interface provided by NASA. Linear

simulation results were generated using linearized
models in MATLAB. A nominal trim flight
condition at angle-of-attack of 50 degrees and altitude
of 25000 feet was selected to perform the evaluations.
Step inputs in angle of attack and doublets in
stability axis roll rate were performed in both the
linear and nonlinear simulations. Comparisons
between control designs synthesized with and without
the presence of parameter uncertainty were made in
both the linear and nonlinear case. Gains generated
with the effects of parameter uncertainty used a value

of 1000 for the parameter . Results from the
nonlinear simulation were then compared to linear

results to verify the effectiveness of the controller at
flight conditions varying from the nominal trim
condition.

4.1 Li Simulation Result
Linear simulation results were generated to

determine the response of the controller in the linear
region about the nominal trim operating point. State

and control performance weightings were adjusted in
the design process to provide adequate time response

to step inputs in the commanded states, without

requiring overly large commands from any of the
controls. As the effect of parameter uncertainty was
added to the design, comparisons could be made to
show the resulting effect on time response.

Fxgures 8-9 show time responses of the
linear system usmg gains generated with and without
parameter uncertainty. Linear step responses in

angle-of-attack and doublet responses in stability axis

roll rate are presented. Linear responses to
longitudinal step inputs are virtually identical with
and without uncertainty included in the design, while
there is a slight difference in lateral response. Thisis °
mainly due to the fact that most of the uncertainty

‘accounted for in the design process was in the lateral

coefficients.
4.2 Nonli Simulati Resul

Responses were generated in the nonlinear
batch simulation starting from the nominal trim
condition of 50 degrees angle of attack at 25000 feet
altitude. Step responses in angle-of-attack were fairly
consistent near the nominal point, but had some

~ difficulty achieving the higher angle-of-attack flight

conditions due to actuator saturations. This is
illustrated in Figure 10. Lateral responses, shown in

. Figures 11-12, showed only small differences between
. the design with and without the effects of uncertainty.
The main difference between the two can be seen by

examining the actuator responses shown in Figures

'13-16. The parameter robust controller tends to use

thé thrust vectoring, whose effect is known with
greater certainty, than the aerodynamic controls,
which are less well-known.

2. Conclusions
A parameter robust controller based on game

. theoretic synthesis has been designed for the F-18

HARV and implemented in nonlinear batch
simulation. The goal of this design was to be able to
track pilot command inputs in the presence of
parameter uncertainties. A linear controller was

designed and game theoretic synthesis used to extend

the valid range of the linear controller. The use of

“error coordinates in the controller design provided for

a compensator which achieves zero tracking error to

- step command inputs in steady state. Also, the

compensator design allows for any combination of
angle-of-attack, sideslip, roll, pitch and yaw body
rates to be commanded with zero steady state error.

From simulation results, it was seen that
this controller produced some improvement in the




lateral response, although limitations due to actuator

 effectiveness and saturations at the high angle-of-
* attack flight conditions considered limited the amount
" - of improvement which could be observed. The most

significant effect of the use of the parameter robust

_controller is seen mainly in the use of different

actuators to obtain similar responses. That is,
actuators which influence the behavior of the dynamic
response with more certainty, such as thrust
vectoring, are used more heavily than aerodynamic
controls which have less well-known effects at high
angle-of-attack.
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Disturbance Attenuation Approach to Adaptive
Control Applied to Longitudinal Flight Control of
the F-18 HARV

C. H. Dillon and J. L. Speyer
University of California, Los Angeles

Abstract

The disturbance attenuation approach to controlling systems subject
to external disturbances and uncertain coefficients has recently been un-
der investigation. In this approach, a ratio of performance outputs to
disturbance inputs is formed, and a controller is found which maintains
this ratio below a certain bound. This disturbance attenuation problem
is solved by converting the disturbance attenuation function to a perfor-
mance index of a dynamic game problem. This game problem is then
solved using dynamic programming. The resulting compensator structure
is adaptive in that estimates of uncertain coefficients are calculated on
line, and robust in that the control is a function of the worst case state
and parameter values. This paper demonstrates the application of such
a compensator to the problem of longitudinal flight control with uncer-
tain aerodynamic control moment coeflicient and well known thrust vector
control. Step responses in angle of attack are presented which illustrate
the effectiveness of the robust adaptive compensator.

1 Introduction

Over the past several years, teclmiques have been developed for controlling
uncertain linear systems subject to external disturbances by considering a dis-
turbance attenuation problem. In this approach, a measure which is essentially
the ratio of norms of performance outputs to disturbance inputs is created, and
a robust compensator is sought which bounds this ratio below some limit. In
[1, 2], this problem was approached by converting this disturbance attenuation
function to a performance index and then using a game theoretic approach to
find the minimizing control for the worst case maximizing disturbance. This
approach extended the results of Hy, analysis to include not only time invariant
systems on infinite intervals, but time-varying systems on finite intervals as well.

In the work presented in [3], this disturbance attenuation approach was
applied to a class of problems in which uncertainty exists in one or more param-
eters in the system control coefficient matrix. Using a dynamic programming




approach suggested in [1], the problem was split into two parts. Optimizing
from current to final time yielded a controller as a function of the states and
parameters and an optimal return function which represents the cost to go from
the current time to the final time. Optimizing from initial to current time
yielded an estimator structure which provides estimates of the current state
and parameter values based on past measurements up to the current time as
well as an optimal accumulation function which represents the cost accumulated
up to the current time. An algebraic “connection condition” was then deter-
mined by maximizing the sum of the optimal return function and the optimal
accumulation function with respect to the states and parameters at the current
time. This then resulted in a compensator structure which is both robust in
that it chooses a control based on the worst case disturbances and parameter
uncertainties and adaptive in that the uncertain parameters are estimated using
available measurements.

The problem of flight control design at high angles of attack presents a
natural application of such robust and adaptive compensators. In [4], a robust
controller was designed for high angle of attack flight conditions of the F-18
HARV (High Angle-of-Attack Research Vehicle) aircraft. The compensator was
designed for zero steady state tracking of pilot inputs by augmenting the state
space with integral error states. Additionally, due to the physical limitations
of the thrust vectoring hardware on the aircraft, additional “washout” states
were added so that thrust vector commands were faded to zero in steady state.
The robust compensator design was then used to effectively expand the usable
region of the linear controller about each design point.

One difficulty which arises with such a design is that parameters in the
linearized system may change rapidly and in some cases switch signs over dy-
namically varying flight conditions. By estimating the parameters which tend
to vary the most and/or have the greatest effect on system performance, it may
be possible to increase the overall performance of the compensator as parameter
values become more well known. The unique advantage of a robust adaptive
compensator snch as that which is presented in this paper is that by forming
the control based on the worst case values of state and parameters, the com-
pensator can effectively use the controls whose coefficients are better known
until enongh measurements have been taken to reduce the uncertainty in the
unknown coeflicients to the point where the associated control can be used with
confidence.

In the example presented in this paper, the longitudinal dynamics of the F-
18 HARV are considered at a given flight condition. The plant states are angle
of attack, a, and pitch rate, . The controls to be used are elevator deflection,
6e, and thrust vectoring, é7ve. The problem is to follow step commands in
angle of attack with zero steady state tracking error while fading the thrust
vectoring commands to zero in steady state due to the hardware restrictions
of the paddles used for thrust vectoring on the F-18 HARV. To demonstrate
the behavior of the robust adaptive compensator, the moment coefficient due to
elevator deflection, M;_, is considered to be unknown and is to be estimated on
line. Results are shown which illustrate the effect of the disturbance attenuation




bound.

2 Disturbance Attenuation Problem

The problem of disturbance attenuation is one of finding a control which limits
the effects of all admissable disturbances and uncertainties on the compensated
system. A disturbance attenuation function is formed which is essentially a ratio
of the norms of performance outputs over disturbance inputs. The problem,
then, is to find a positive parameter 8 such that this disturbance attenuation
function is bounded. This function can be written as:

D=1 <1 950 (1)

where the measures of performance outputs, 7l and ||@]|? are defined as

. ty
1 = Velenl, + [ (el + holly) i )
. ty .
ol = NeONEs+ [ (olms + ol o (3)

where « represents the states, « the controls, w the plant input disturbance, v
the state measurement noise, and £ represents the augmented state defined as
&= [ =T g7 ]T, where 3 represents the unknown control coefficient matrix
parameters. The dynamic system under consideration is of the form:

© = Az+B(B)u+Tw (4)
Hr+wv (5)
(6)
where
k
B(B) = Bo+ Z B;B; (7)
J=1
B =0 (8)

To approach this problem, as in [2, 3], we reformulate the disturbance atten-
uation problem as a differential game problem, with performance index given
by:

7 = i - Jierf <o ©




For a given value of 8, then, the problem becomes one of finding the control
u which minimizes this cost in the presence of the worst case maximizing distur-
bance inputs provided by initial conditions, £(0), and state and measurement
noise (w, v).

3 Dynamic Programming Solution

It is shown in that the minimax problem associated with the performance index
given by (9) reduces to a saddle point problem so that the operations of mini-
mization and maximization can be interchanged [3, 5]. This leads to a dynamic
programming solution with an accompanying decomposition, which is further
developed in [3]. The first part of this decomposition, a control subproblem,
defines an optimal return function, ¥ (,8), which represents the cost to go
from current time, ¢, to final time, t;. The second part, a filtering subproblem,
defines an optimal accumulation function, Y (z¢, 8), which represents the cost
accumulated from initial time, 0, to cirrent time, . The dynamic programming
problem, then, is to find the values of state and parameters, Z, 3 such that:

T (#08) + ¥ (5,8) 2T (50, ) + ¥ (50, 8) Vou, B (10)

3.1 The Control Subproblem

The control subproblem represents the task of finding the control, u, which
minimizes the cost to go from the current time, ¢, to the final time, t;. To
accomplish this, we first write this cost as:

Loltts) = {le el + [ [ty b = 5 (1t + ot -+)] ar} )

Appending the dynamics (4) to the cost and solving as in [3] yields an
expression for the minimizing control, u, and maximizing disturbance, w, as a
function of the states and parameters. The parameter dependence arises through
the associated Riccati equation, which is calculated using the control coefficient
matrix, B (8) evaluated for the given values of the parameters, 8. Thus, we
have:

w

i(r) = -R'B(B)TI(B,7)z(r) (12)
w(r) = OWIrTn(g,7)z(r) (13)

I

where the matrix IT (8, 7) is defined as the solution of the Riccati equation

| - ATH+I'IA+Q—H(B(ﬁ)R“B(ﬁ)T—0I‘WI‘T)1'I (14)
M) = Q




Substituting the expressions obtained for the control and disturbance back into
the performance index (11) gives the desired expression for the optimal return
function:

¥ (0, B) = 52T T () (15)

The control which arises from this portion of the solution, then, is based
upon full information of the state and parameter values. This solution has been
further extended to allow infinite final time in [5].

3.2 The Filtering Subproblem

The second part of the problem considered is that of solving the optimization
problem in reverse time from time 0 to the present time, t. To do this, the cost
is first written in terms of the augmented state, €.

1/ 1 2 112 ’ 1 -
s =3 {5 eo &+ [ [verd+ = 5 (votfms + = - )| ar } 10

where

Q = [ (2 ()nxp :I

()])X" ()]'XP

and the dynamics of the system (4) are rewritten in terms of the augmented
state, £ as:

£ = At+Bu+Tw (17)
He¢+w (18)

e

with A, B, T, and H defined as

- | A Biu --- Bu = | Bo = T o
a=[g 2oy Bl oe= 0] e-[0] A=rE o)

Adjoining the anginented dynamics, (17) to the performance index (16) and
solving the optimization problem results in an equation for an estimator which
gives estimates of the state and parameter values at time ¢ based on the in-
formation contained in the measurements, z, up to time ¢t. This estimator is
represented by:

~

£

_ (A+6PQ)é+ Bu+ PATV™! (2 — HE) (19)
£(0)

fo

i

[43]




where the matrix P is the solution of a Riccati equation given by:
P = AP+PAT+TWIT -P(HTV'H-6Q)P (20)
P) = P

Combining these relations with the performance index as in [3] gives the
desired relationship for the optimal accumulation function:

Y(x,8) = g(uf,,:if))—2—10-eTSe (21)
where
. 1 T Ty 1 T yr—1 Py
g = E(u Ru+ i Q:u)—-éz(z—Ha:) V=i (z - H%)
e = ét—ér,
s = p!

3.3 The Connection Condition

The final piece in forming the adaptive compensator is to perform the maxi-
mization of the sum of the optimal retwrn function (15) and the optimal accu-
mulation function (21) at time t. That is, we wish to find the worst case state
and parameter values, 25 and 8* which are found from the maximization

1;1;%( [¥ (4, B) + X (e, B)] (22)
This maximization can be simplified somewhat by first solving the maxi-

mization with respect to the state x;, which gives an algebraic relation as a
function of the parameter 3. Partitioning the matrix S as

Spr Spp

the expression for the worst case state 27 as a function of the parameter 3 is
then given by

2} = [0TL(B) ~ Sua) ™ [Sua (B = ) — Suait] (23)

with the requirement that

OT1(B) — Spe <0 VB (24)
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The maximization problem can then be solved as a function of the parameter
only. It should be noted, however, that since the Riccati solution IT(3) is
dependent on B, the resulting function to be maximized becomes quite nonlinear
and may have more than one local maximum. It is possible that at some time ¢
there could be two peaks of equal magnitude. Should such a case arise, it should
be noted that although the worst case state and parameter values at these peaks
will be different, the resulting control will be the same {3].

4 Application to Longitudinal Flight Control

The basic dynamic system to be considered in this example is a system consisting
of two states (angle of attack, c, and pitch rate, ¢) and two controls (elevator
deflection, 8., and thrust vector command, érvc). The basic dynamics for
this system are obtained by linearizing the dynamics of the airplane about a
particular trim condition. For this particullar example, a flight condition at an
altitude of 25,000 feet, and angle of attack of 10 degrees was selected. The basic
dynamic system, then, can be written in the form:

d n Z,, Z‘I x Z(,’e Zf"'rvc 56 Weq
[«}] = [Ma M,,H(/}J’[Mﬁ, Mewwo | | 8ve | 7| wy B
1 0 1< Vo
== Lo v)o ]+l @

In formulating the dynamic system to be controlled, we first consider the
objectives of the control design. Primarily, we would like to be able to track step
commands in angle of attack, «, with zero steady state error. As a secondary
objective, we would like to fade the thrust vector control command, érve, to
zero in steady state to avoid damaging thie paddles which are used as actuators
for thrust vectoring on the F-18 HARV. Also, since the control effectiveness of
the elevator can change at varying flight conditions, we consider Ms, as the
uncertain parameter to be estimated on line.

To accomplish our first objective, we formulate a change of variables and
define the error coordinate e, as the error between actual angle of attack, a,
and commanded angle of attack, o,.

€a =0 —0, (27)

To track step commands in « with zero steady state error, a constant value
of the control deflection 8. will be required in steady state. To assure that the
problem remains well posed we must form a new state space by differentiating
the error so that the control in the dynamic system used in the design synthesis
is actually the derivative of the actual physical control. This assures that we
have a state space for which the performance index will remain finite as final
time becomes infinite [6].




Next, we need to incorporate a means of fading the thrust vector command,
brve, to zero in steady state. To do this, we include é7vc in the state space
which we can then weight in our performance index so that it is driven to zero
in steady state. However, we must also note that the system must remain
controllable for all values of the parameter 3. To assure that this condition is
true, we redefine 8. as two controls,

bc = (65)kumun + (6€)unknmnn

where (6e),.0wn 1S Multiplied by a fixed value of the control coefficient, (Ms,)o
which allows the system to remain controllable for all values of the unknown
value of Ms_ which multiplies (8e),, 10w - Since, in reality, the value of M, is
uncertain, we choose the control weightings in the performance index so that the
cost associated with using (6.) is much greater than the cost associated
with using (e )., isemm -

The dynamic system used in the solution of the control subproblem, then,
is defined as in (4) with

Lrown

€n h
q ( E) unknmon
€= ¢ w= (bc)
) (l 6 Enoun
drve TVC
and .
0 0 1 0O 0 0 0 0 0 0
0O 0 0 1 0 0 0 0 0 0
A=10 0O Z, Z(, 0 B = Zs, Zﬁc Zﬁ'rvc I'= 1 0
00 My M, 0 My, (My)y Mepyo 0 1
0O 0 0 0 0 0 0 1 0 0

For the filtering subproblem, the augmented state is simply

T
&= [ M, ]

As an additional note, since for the objectives we have specified, the pitch
rate g does not need to be controlled, we effectively ignore that state when
formulating the controller. To be able to control ¢ we would either need to
include another aerodynamic control such as flap deflection, or allow the thrust
vectoring command to attain a nonzero steady state value.

In solving the maximization problem to obtain the connection condition, we
note that the state éryc is actually something which we calculate directly and




its dynamics are decoupled from the rest of the states, so that we may simply
adjoin the constraint érvc = érve to (22). Partitioning the Riccati matrix T1
as

l—Ia:J.' l—Iﬂ:"u
= [ M, M, ]

the connection condition for the worst case state becomes

5} = [0Tle (8) = Suel " [Sua (8= B) = Soaies = OMlnbrve]  (28)

5 Simulation Results

To demonstrate the behavior of the adaptive controller at varying values of the
parameter 6, step responses in angle of attack were simiulated. To emphasize
the effect of 8 on the behavior of the compensated system, the initial parameter
estimate was taken to have the opposite sign of the true value of M;s_. A step
input of 10 degress from the initial trim condition at 10 degrees angle of attack
and 25, 000 feet altitude was commanded. The linearized system coefficients at
this flight condition are given in Table 1. To best demonstrate the effect of the
adaptive controller, the initial estimate of Ms_ was taken to be 2.0.

Coefficient | Value |

Za -0.3367

Zq 0.9976
M, -0).2065
M,  |[-01229

Zs. 20,0603
Zomve | 00278
M, -2.7320
Merew | -1.4747

Table 1: Linearized System Coefficients, a = 10 deg, h = 25,000 ft

In Figure 1, 10 degree step responses in angle of attack are presented. In the
case of # = 0, the response initially moves in the opposite direction before rising
to the commmanded angle of attack and eventually settling to a zero steady state
error. As 6 is increased, hence the disturbance attenuation bound decreased,
the step responses become faster and no longer exhibit the characteristic of an
initial response in the negative direction. This is also reflected in the pitch rate
responses shown in Figure 2.

To understand why this increase in 6 improves the step response, we can
examine the control commands. First, examining the elevator deflection rate,




bc, shown in Figure 3 and elevator deflection, &, shown in Figure 4 we see
that for 8 = 0 a great deal of effort is applied using this control, although it
is actually moving in the wrong direction due to the erroneous initial estimate
of M;,. As 8 is increased, though, we see that the controller initially uses very
little elevator. Conversely, in Figures 5 and 6, we see that at ¢ = 0 that a
relatively small amount of thrust vectoring is used, but as @ is increased, thrust
vectoring is used more heavily initially before fading to zero in steady state. In
essence, the controller seems to hedge against using the elevator initially, due
to its uncertain effects, while relying more heavily upon the thrust vectoring,
whose effect is known with much greater certainty.

The estimated values of My, shown in Figure 7 reflect the heavier utilization
of elevator for ¢ = ). As 6 is increasecd from 0, the estimator response is initially
slower, but becomes faster as 6 increases. The key factor in the behavior of
the controller, however, lies in the worst case parameter value, M; , plotted in
Figure 8. Initially, the true value of the parameter is highly uncertain, which
is reflected in the “variance” of the parameter Mjs_, shown in Figure 9 and the
“cross covariance” between the parameter and state, as shown in Figure 10. At
some point, as the parameter value becomes more well known, this worst case
value begins to follow the estimate, M;,e, and the controller then begins to use
the elevator deflection more confidently.

The point in time at which the controller begins to follow the estimated
value of M, is a function of the maximization (22). At a particular point in
time, it is possible for this fimetion to liave more than one local maximum.
For 6 = 5, Figure 11 shows that this siun around the time that the worst
case paramter begins to follow the estimated parameter has two peaks. At
a certain point in time, the peak which more closely follows the parameter
estimate begins to dominate as the decreasing variance causes perturbations
from the estimated valie to be weighted more heavily. At this point in time,
the worst, case parameter jumps to a value corresponding to this peak. Then,
as this peak begins dominating the other peak, the controller begins to use the
elevator deflection more heavily.

6 Conclusions

The results presented in this paper demonstrate the performance of a robust
adaptive compensator based on disturbance attenuation. These results show
that as the disturbance attenmuation bound is lowered, the compensator tends
to rely more upon controls whose effects are know with more certainty until
estimates of uncertain coeflicients are known with enough confidence to be used
effectively. The most dramatic improvements in performance occur when the
initial estimates of the unknown parameters ave farthest from their true values.

For systems which contain a great deal of parameter uncertainty in some or
all of the coefficients, such as flight control systems, this type of compensator
can prove to be very useful. Without any a priori restrictions on the structure
of the compensator, the disturbance attenmation approach results in a design
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which is both robust in that it tends to hedge against uncertain states and
parameters, and adaptive in that it uses the measurement history to update
its knowledge of the unknown parameters. This type of design is particularly
useful for systems, such as the flight control system examined in this paper, in
which parameters may vary in magnitude and/or sign over varying conditions.

By using this robust adaptive compensator, the controller not only has the
ability to update its information of the system model, but is designed in such
a way that it chooses its control based on how well this model, or parameters
within the model, is known. As more information becomes available to the
controller, the parameters within the model become more well known, and the
controller is able to use this increased certainty in the system model to utilize
controls which are most affected by the uncertain coefficients with more confi-
dence. By using the controls which are known with the greatest certainty, the
overall performance of the system can then be improved.
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Figure 2: Pitch Rate Response
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Approximate Nonlinear Game-Theoretic Estimation and
Control

Jinsheng Jang and Jason L. Speyer

University of California, Los Angeles
Abstract

For a class of linear dynamical systems with nonlinear perturbation, an approximate
optimal estimation scheme is derived based on a deterministic game-theoretic crite-
rion. Using the calculus of variation approach, the process disturbance and initial
state vector are first maximized. The resulting optimality condition is then expanded
with respect to a small parameter to solve for the worst case state and the Lagrange
multiplier term by term. Subsequently, the approximate optimal estimator is de-
rived by minimizing a series of cost criterions over its corresponding state estimate
vectors. The estimator Riccati differential equations (RDE) necessary for the first
and higher order correction terms are shown to be the same as in the zeroth-order
case. Then, the infinite order approximate minimax estimator is shown to be dis-
turbance attenuating. In addition, the N-th order approximate minimax estimator
is proved to achieve disturbance attenuation with a higher threshold proportional to
the N + 1 power of the expansion parameter. Therefore, as more and more terms
are added, the N-th order threshold moves closer and closer to the infinite case. For
a similar class of linear dynamical system with similar perturbation, an approximate
game-theoretic measurement feedback controller is obtained. As in the estimation
problem, first a maximization problem with respect to the disturbance and initial
state vector is performed. Then, a minimax deterministic game is considered where
the measurement noise is acting as a maximizing player and the control is treated as
a minimizing player. The analytical form of the zeroth-order term for the approx-
imate controller resembles the linear solution. However, the first and higher order
correction terms of the controller require two estimator where one of the estimator
is almost the same as in the pure estimation case. The other estimator is derived
from a two-point boundary value problem associated with the control minimization
sub-problem. For the zeroth-order case, the two RDEs for the control problem are the
same as in the linear case. Although the estimator RDE remains the same as the order
of the problem progresses, the controller RDE for the first and higher order problem
is different from the zeroth-order case. Finally, the approximate game-theoretic con-
troller is proved to have disturbance attenuation property when infinite order terms
are used. Furthermore, this property is kept when only finite correction terms are
used for the approximate controller using an increased threshold value proportional
to the N + 1 power of the expansion parameter. As expected, this threshold moves
closer and closer to the infinite order threshold as more and more correction terms




are utilized in the approximate controller and recovers the original threshold when
infinite correction terms are incorporated.

I. Introduction

In the literature, the research in the area of the deterministic approximate op-
timal guidance has been well documented [1, 2, 3]. Two approaches, namely the
Hamilton-Jacobi-Bellman equation expansion technique [1] and the calculus of varia-
tion approach [2, 3], are related to our works here. Surprisingly, very few reports on
the equally important approximate optimal estimation problem using the above two
deterministic approaches have been investigated. In addition, the disturbance atten-
uation property of the approximate guidance scheme as derived in [1, 2, 3] has not
been studied. To the authors’ knowledge, only the stochastic approximate optimal
estimation using also a power series expansion technique is found in [4]. In [4], for
a specific polynomial nonlinearity of order 3, an approximate estimation scheme is
derived by indirectly calculating the approximate conditional density function using
perturbation method. Their results are only valid for a scalar system. Furthermore,
in [4], explicit formula to determine the expansion terms of the conditional density
is obtained only for a very simple example. Recently, in [5], a deterministic game
problem as here is formulated for a singularly perturbed dynamical system. Only the
linear dynamical system is treated in [5].

In this work, using a regular perturbation approach, for a class of linear dynamical
system with nonlinear perturbations in both system dynamics and measurement equa-
tions, an approximate estimation scheme is derived. A calculus of variation approach
[6] is used to derive the estimator based on a deterministic game-theoretic perfor-
mance index. First, by expanding a nonlinear, two-point boundary value problem
with respect to the small parameter, a series of linear, solvable two-point boundary
value problems are obtained and solved for the worst case state and Lagrange multi-
plier vectors term by term. Next, setting the small parameter to zero, the zeroth-order
solution for the approximate filter is shown to be the linear H,, estimator as derived
in [7]. Furthermore, first and the higher order correction terms for the approximate
game-theoretic estimator are derived via the minimization of a series of performance
indexes with respect to its corresponding state estimate correction terms. The per-
formance indexes are results of the power series expansion of the original performance
index with respect to the same small parameter. Since only the filtering problem is
of interest here, the resulting estimation equation is simplified by substituting the
boundary condition of the Lagrange Multiplier into its associated optimality condi-
tion. The RDEs for the higher order correction terms are derived to be the same as
the RDE in the linear H,, problem.

Subsequently, the disturbance attenuation problem as defined in section II is
shown to be solved by this infinite-order approximate game-theoretic filter. Fur-
thermore, the N-th order disturbance attenuation problem is proved to be solved by




the N-th order approximate game-theoretic filter which is truncated from the infinite
order filter. Particularly, the disturbance attenuation threshold for the approximate
game-theoretic filter of arbitrary order is shown to be upper bounded by twice the
original threshold and the increase in the threshold is proportional to the N + 1
power of the expansion parameter. Therefore, as the order of the estimator increases,
the threshold decreases and reduces to the original threshold as the order approches
infinity.

Next, the approximate game-theoretic control is formulated and derived by solving
a disturbance attenuation problem with a regular perturbation approach bu using
the calculus of variations. The derivations are separated into two parts. First, a
maximization problem is solved with respect to the disturbance and initial state
vectors. Following that, the first-order necessary conditions are derived. Similarly as
in the estimation case, a nonlinear two-point boundary value problem is formed based
on the original system dynamics and the first-order optimality conditions. Naturally,
both this nonlinear two-point boundary value problem and the cost function are
expanded using a combination of power series expansion and Taylor’s series expansion.
Secondly, a series of linear minimax deterministic game problems with respect to the
expansion terms of the cost function are solved sequentially again using a calculus of
variation approach. In each problem, the first order necessary condition is derived,
then another two-point boundary value problem is formed based on the necessary
condition.

The zeroth-order solution of the approximate controller resembles the linear case
as obtained in [9]. The first order and higher order correction terms of the controller
require two estimator. The first estimator is almost the same in the pure estimation
case. The second estimator is derived from the two-point boundary value problem
from the control minimization part of the problem solution. For each expansion term,
the controller requires the solutions of two RDEs, namely the estimator RDE and the
controller RDE. The estimator RDe remains intact as the order of the correction
terms progresses. However the controller RDE for the first and higher order case is
different from the zeroth-order solution. This is due to the fact that the measurement
vector is a given sequence and thus not expanded. Therefore, the measurement vector
is treated as a zeroth-order term only. As expected, similar disturbance attenuation
results are proved.

The present paper is organized as follows. In section II, the disturbance atten-
uation problem for the approximate game-theoretic estimation is folumated. The
problem is then solved using a game-theoretic approach. Using a caculus of varia-
tion technique, the first order necessary condition is derived for the maximization
problem. In section III, the zeroth-order solution is obtained solving a minimization
problem with respect to the zeroth-order term of the cost function. The first order
and higher order correction terms for the approximate estimator are derived in sec-
tion IV. Section V presents the results of the disturbance attenuation property of the
estimator. Finally, the approximate game-theoretic controller for a output feedback




control problem is derived in section VI.
II. Problem Formulation

Consider a linear dynamical system with nonlinear perturbation

z = Az + eg(z) + Tw (1)

and the measurement equation with nonlinear perturbation as

z2=Hz +eh(z)+v (2)

where zeR", weR?, and ve R™ are the state, process disturbance, and the measurement
noise vectors, respectively. In this paper, g(z) and h(z) are assumed to be continuous
and infinitely differentiable. To start, denote a disturbance attenuation function as

¢ .
fo |z — x]]édr

D, (2, w,z(0 :
) ) 5@ + e [0l + I = He = ch(D)

3)

where & is the state estimate vector. The numerator and the denominator of the
disturbance attenuation function are measures of the output and input energy using
quadratic norm. Based on (3), the disturbance attenuation problem is defined as to
find an optimal estimator &*(-) such that

Dy (2", w,2(0)) <0, 6>0 (4)
for all weL,[0,t] and z(0)eR™ such that (w(r),v(7)) # 0 for all 7¢[0, t] and z(0) # £(0).

In (4), 0 is called the disturbance attenuation threshold, £*(-) is defined as a causal
mapping as

& (r) = ¥[2(r)] (3)

where Z(7) = {2(s)|0 < s < 7} is the measurement history. Intuitively, 6 can be
interpreted as a upper bound of a transfer function measuring the effect of the input
norm upon the output error norm.

To solve the disturbance attenuation problem as defined in (4), we adopt a mini-
max approach. A seperable performance index is obtained from (4) as

Iasw,2(0) = ~glel0) = 2O+ [ Flle =3l — Jiholf-
+z — Hz = hfyiJdr ©)




The problem is to find an estimation scheme based on the optimization of the per-
formance index in (6) for the system described as in (1) and (2). Thus, consider the
following deterministic game

minzmazzo)w J, (7)

where #(+) is trying to minimize J while the adversaries, £(0) and w(-), are intending

to maximize J. J is as chosen in (6) subject to constraints (1) and (2) which is

explicitly introduced into the cost J using a Lagrange Multiplier \. Note that the

maximization of the measurement noise is implicit through the constraint (2) since

the measurement vector z is given and the maximization of the initial state vector

z(0) and the process disturbance w leaves no more freedom to the measurement noise.
The maximization procedure is tackled first. For our conviences, denote

J*(&;2%(0), w") = mazy)w J. (8)

From the calculus of variation approach [5], the first order necessary conditions of
optimality are easily obtained as

MT(0) = [2(0) — 2(0)] P, AT (t) =0,
M 4+ Mg, + M\TA+ (z— Hz — ¢h)TV Y (H 4 eh) + 07 (z - 2)TQ =0
—wTW 14 AT =0 ()

where the partial derivativve matrices are defined as h, = a—’g(fl and g, = 3_%(52. From
(9) and (1), a nonlinear two point boundary value problem is formed as

[ i ] - [ (H + ehx)TlﬁIH -071Q —Agvfz(i;z)T ] [ A }

+ —(H + ehz)TV‘f?z —¢h) +07'Qz ] , 2(0) = 2(0) + FoA(0), A(t) =0 (10)

I1.1 An Ordinary Perturbation Approach to the Solution of the
Disturbation Problem

In general, it is impossible to solve for the worst case z and A analytically from
(10). Therefore, the worst case z and A are determined approximately by expanding
(10) in a power series [2]. Note that z is a given data sequence and is not expanded
below. To start the expansion, let

x:izjej, A:i/\jej, 5:=i:i:jej. (11)
Jj=0 Jj=0 i=0




Subsequently, g, gz,
respect to xg as

=

and h, are expanded using Taylor’s series expansion with

1 _
g9(z) = §+gs(z—20)+5(z~ 20)" Gzz(T — T0) + - - -
= goteqp+€g+--- | (12)
9:(2) = Goo + €9z, + €290, + - (13)
where
9o = §=g(2)lo=so
_ 9g(z)
G = 01 = _6;——':::.720331
_ 1 o dg(z) 1 70%(z
g2 = G9zT2 + 537?9:1:1‘1'1 = _a:;:—lﬂfa’ﬂom? + 53:{'672)41:::3301'1 (14)
_ 0Oy
9z = Gz = E‘Elx:avo
_ - &g
Gz, = Gzz2T1 = ’é‘;;lz:zoxl
_ 1
9o, = GrzTo+ Emfgzzxxl (15)
Note that gsz, grzz, €tc., are tensors. For example, for dur conveniences, denote
(z — mO)Tgl.a:z
((I) - wo)Tgu(iL' - 3"0) = (.’B - .’IIQ) (16)

o [#] _
€ ‘.AO-
z9(0) =
e 9
1. 4 —
€ .hAl-

((11 - mO)Tgn,z:c

as a column vector instead of using tensor notation. Similarly, h(z) and h.(z) can be
expanded. The related notation is self-explanatory. Equation (10) is then expanded
using (11), (12), and (13). After equating the coefficients of like powers of ¢, a series
of linear, two-point boundary value problems are obtained as

A rwrt W [
| (HTV-'H - 671Q) —AT |
.’23(0) + Po/\o(()); )\o(t) =0
[ A TwrT [
| (HTV'H-67'Q) —AT |

Zo

I-Ao-

I

+ 0
—HTV-12 4+ 071Qz,
(17)

-Al -




90
+ [ —hfoV'l(z — H.’Eo) + HTV—lho - gxo)\o + 6~ 1Q$1

21(0) = Poh(0); M(t)=0 (18)
62‘[?\2] = [(HTv—lﬁr—o-lQ FE;T”,\:]

o[ ]

where
g5 = -—hflV'l(z — Hzo) + h£°V"l(ho + Hzq) — gflx\o —gg;/\l
+HTV 1hy + 671Q1,. (20)

Let 23 and A} be the solutions to the corresponding problems in (17)-(19). Denote

Zm e, X' = Z)\*e’ (21)

Jj=0

Similarly,

9(@*) = Y gi¢s gw(a”) = Yo gL,y haT) = D M3E, haelaT) =D hLe (22)

Furthermore, J* is expanded as

¢ 00
. 1 .
= DIy s, + / IR -(ijenuq
_7—.0 =0
—“IIZA*ejllrer oe—n Zw ¢) —€(Zh*6’)llv-xdT (23)
=0 =0
Denote J* = 1o, Jie'. Thus
0 .. 1L L 8 0 )
Jo = ~SIOR + [ 3ot~ dolly - §1NiNwes — 3l = Hagll-vdr (20
t
o= —OOFRN0)+ [ (65— 0@ - 80) - ONGITTWIT;
0




—0(z - ng)Ti/-l(-Hx; — hY)dr | (25)
B = =00 PoX0) - SO + [ (a5 - 50)7Qa5 ~ i)

a3 - dully = OITIWITX; — X [yen

~0(z — Hop) V=Y~ Ha - k) — o|[Ha + hilly (26)

Note that the €® terms in (17) and (24) are exactly the same as in the linear case [6].
Thus, zeroth-order solution is indeed the linear H, estimator which will be derived in
section ITI by minimizing Jo with respect to & subject to its associated constraints.
As shown in section IV, the first order correction term for the estimator will be
obtained by minimizing J; with repect to the first order correction term of the state
estimate, namely, &, subject to its associated constraints. Based on this philosophy
of the perturbation method, the higher order correction terms of the estimator are to
be determined in section IV.

II1. Zeroth-Order Solution - the Linear H,, Estimator

To derive the zeroth-order solution, consider the linear, two-point boundary value
problem as in (17). Assume

Ty = e + PAG (27)

where z., is an intermediate variable and P is the Riccati variable, both of which are

to be evaluated later. Differentiation of the above equation and substitution of both
sides of (17) yields

[AP+TWTIT — P — P(HTV™'H - 67'Q)P + PAT])\;
= —Axy+ic +P(HTV'H —07'Q)z,, — PHTV 2 + 071 PQio

Since )j, is arbitrary, the choices of

Toy = Ao+ PHTV™(z = Hze,) + 071 PQ(zc, — £0),2:(0) = £(0)  (28)
P = AP+ PAT+TWIT - P(HTV'H -07'Q)P, P(0)=P,.  (29)

guarantee the satisfaction of (27). Add the zero identity

oxo 2 0/\*t 2 64 AV PAdr =0
5“ o )”Po"‘é” o )”P(t)+§ A ;1'7',‘[( 0) oldr =

to Jo as in (24). Thus




- g. /0 67 12e, — Fol3 — |12 — Ha|[-1dr. (30)

Now consider the minimization problem

ming, Jo(Zo0, Tey)

subject to constraints (28) and (29). Note that the advantage of perturbation method
is exploited here to obtain the optimal o by neglecting first and higher order terms
of the expansion of the cost function. Thus, using the Lagrange Multiplier technique,
the first order optimality condition is obtained as

0 = Qze —%o0) +QP¢ (31)
¢ = —AT¢+ HTVIHP( - 07'QP( — 07'Q(2c, — £0) — H'V ™ (2 — Haz,),
() =0 : (32)

The result of substitution of the boundary condition {(t) = 0 into (31) is subsequently
substituted into (28). Thus

i, = Aiy+ PHTV [z — Hzy], 35(0) = £(0), (33)

where P is determined from (29). Note that (33) is obtained using the fact that the
current time t is arbitrary. Equations (33) and (29) form the linear H,, estimator.
Note that the worst case strategies for o and Ao are denoted as z§ and Ay which are
calculated from :

[iz] = [(HTV -1g _9-1Q) F-I-ZFTT] [ig]*[-—HTv-lew*Qﬁo]
z5(0) = £(0) + Porg(0); Ao(t) =0 (34)

Using &3, the minimax strategies of 2o and Ao are denoted as zg' and Ag* which are
determined from

ip ] A TWIT | [ of 0
e | T | @TviE-01Q) —AT || an | T —HTV2 401033 ]
zg'(0) = &(0) + PoAT(0); Ag'(t) = 0. (35)

IV. First and Higher Order Correction Terms

IV.1 First Order Correction Term




To obtain the first order correction term for the approximate estimation scheme,
we first solve for worst case z; and \; from the ¢! term in (18). After that, the
correction term is obtained from the minimization of €2J, with respect to Z; subject
to its associated constraints. Note that the first order necessary condition of the
minimization problem of J; with respect to Z; is equivalent to the first order necessary
condition of the minimization problem of J, with respect to &o. Using the sweep
method [5], assume

z] =z, + PA]. (36)
Differentiation of both sides of (36) yields

[P + AP 4+ PAT + TWTT — P(HTV'H — 67'Q) P]);
= &, — Az, + PHTV™Y (R} + Hz,)) — 07 PQ(x., — #1) — P(h,)T V™' (2 — Hzy)
—g5 — P(92,)" X

where (18) is used. Choosing

$o, = Az, — PHTV™Y(R:+ Hz.)+ 07 PQ(ze, — 1) + P(h% )TV (2 — Hzj)
+95 + P(95,)" A5 2, (0) = 0 (37)
P = AP+ PAT+TWIT - P(HTV'H - 67'Q)P, P(0)= P, (38)

renders (36) an identity and the boundary condition of (18) satisfied. Before we
proceed further, add the zero identity

0 = OO BN0) — IO POXE) + IO, - IOl

td 1
+6 / z—[(/\;)TP/\;+—(X{)TP,\’{]dT (39)
o dr 2
to Jy. It follows that
t
Jo = 9/ Ldr (40)
0
where
_ 0_—.1_ s 112 4 g1 AT s _l .2
L = - e, — &allg + 07 (2eo = £0)" Q(2e, — £2) = Sl Hey + hly-s

()T P(h%,) VN2 — Hzg) + (62,) N + (z — Hae,) 'V (Hae, + B])
+(N)T P(hs,) "V (Ha + hg) — (h3,)TV ™ (2 — Hag)
—(92,)"2 — (92,)"23)- (41)
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after some algebra. Next, assuming that the zeroth-order term of the state estimate
vector and the zeroth-order adversaries play optimally,

J2 = Jof $1,$2,$c1,$c2,$1)
A 1 m * - m
= 0 [ + 5 oo~ 2l = Az + K- — D7 PV - Ha)
SR (o V(1 1) (08 POVl 415
(b2, YTV e — Ha) — (97 - (62N lar (42

where the arguments of J; of are written out explicitly to avoid confusion. In (42),
note that z.,,z}, A}, and z., are all driven by &,. However, from (36), z.,,z], and
A} are not completely independent. Thus, it is sufficient to consider, say, only the
constraint equations of z., and z7.

Now, when the first order disturbance and initial state vectors play their worst
strategies, (18) becomes

&) _ A TWIT 1 <}
Ml T | HTVIH=-61Q) -AT || X
+ T -1 m g’o -1pm T \ym -1N4 9
21(0) = RoAj(0); A(t) =0 (43)

where the zeroth-order term of the state estimate vector and the adversaries are
assumed playing their minimax strategies. Substituting A\} = P~!(z} — z.,) into the
dynamics of z] yields

&t = Az} + TWIT P (2} — 2,)) + g3, 23(0) = Po)}(0). (44)

After minimization of &, (37) becomes

bo = Aze— PHTVNRD + Heo) + 67 PQ(zn — 1) + PUD)TV Nz - Hal)
+g5 + P(g7)T AT, 2,(0) =0. (45)

The dynamics of z, is similarly obtained as

&, = (A—PH'V'H)z,, —07'PQ(zc, — £2) + g + P(hL )"V (2 — Hal)
—P(RZ)TVTHRG + Ha) + P(9z,) 05 + P(95) "\ — PHTV ™,
z,(0) = 0 (46)
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Next, consider the following minimization problem

mini‘l J2(§:1,‘%2,$c1,$cz’$;) (47)

subject to the constraints in (46), (44), and (45). Introducing Lagrange Multiplier
vectors f, 01, and ¥, to combine the constraint equations as in (46), (44), and (45)
with J; as in (42). Thus, the first order optimality conditions from the minimization
problem (47) are

0 = Qze, —21)+QPm (48)

A —ATyy + HTV-'HPy, + P'g" Py + PT'TWI oy — P gl PAY

—(gm)TAT — () V2 - Hx{,")+HTV (Hee + A7), n(t)=0 (49)
&1 —ATo) — PTITWT 0y + ( ot )Tv 'HPB, — (gh*) VY (z - Hz.,)
+[=(z — Ha)TV ! % 2Py HTVRT P — (A7) %gf: P—Plgnp
0
~(GE)" 1B = X5) + (B)TV Az = Ha), on(0) =0, (50)

B = -ATﬂl + HTV'HPB, — 07'QPB — HTV (2 — He.,) — 071 Q(zc, — £3), |
pit) = 0, (51)
where '

m Oy 0% 7m _ OR Cim 0%k
9 = axl-‘fv‘_l‘o } Yoo = —a_pll‘=$6"’ hz: = —a_a-:ll‘:’l?g" Tz = _8;;2_|1‘=1'6"' (52)
In deriving (50), we have used the identity
ag;(l‘gz) T _ (. m\T
Recall from (17),
A= —ATOR 4+ HTVT'HPMY —07'QPXy — HT'V (2 — Hz.,) i
—071Q(zy — BN (1) = 0 (54)
Comparison of (51) and (54) reveals that for all 7
A5 (1) = Bu(r). (55)

After substitution of (55) into (50),

12




61=—A%o1 — P'TWIT0y, 04(0) =0, (56)

where the zero identity

0=HPﬂ1—(z—Hch)+(z—Hzg’) (57)
is used to derive (56). Thus, for all 7

a1 (T) = 0. (58)
Substituting (55) and (58) into (49) yields

o= —ATq+HV HPy - (g2)"A — (h2)"V 7 (z — Hal)
+HTV Y (Hz,, + A7), m(t)=0. (59)
Substituting 11(t) = 0 into (48),
Qlze, () — 2:(1)] =0 (60)

Thus, the first order correction term of the optimal state estimate is obtained
after substituting (60) into (45) as

i = Aa‘:;‘—PHTV"l[h{,”+H£’]“(t)]+P(h;’;)TV‘1(z-—ng‘)+g{,"+P(g;’; )TAR, 23(0) = 0.

(61)

and P is calculated as in (38). In (61), hZ', A7, g", and g7 are defined as in (12- 15)

when z; plays its minimax strategy «*. But from (27), A\§ = P~(z} — z,), then
substitution into (17), we obtain

= (A+TWITP )y —TWITP g, (62)

Then the first order correction involves the integration of a 2n-vector [(2})7, (z3)7].
It would appear that the dimension should grow on each iteration since the exact
filter is infinite dimensional. However, the estimate itself using only zeroth-oder and
the first order terms is &* & &3 + ei}.

IV.2 Higher Order Correction Terms

Higher order correction terms for the approximate estimation scheme are derived
similarly to the first order case. Thus most of the derivation details will not be
shown. Only the important results are given. For n > 2, the correction terms for the
approximate game-theoretic filter are derived as

13




& = A#+g¢",—PHTVY(hI, + Hi})— P(h;"" YV =z + Hal)
n-2 n-1
=Y PRV (Brges + Halla ) + ) PG N,
=0 1=0
£.(0)=0 (63)

where P is same as in (38) and z} = z., + P\, has been used to derive (63). In
deriving (63), the expansions of J! as in (23) up to the order of magnitude €** (not
€") are necessary for the minimization problem

ming, J' = ming, (Jo+ eJy + - - - + €"Jay) (64)

subject to its related constraints. In (64), for m = 1,...,2n

Jm = 0 / (Z 1T Qrm—) = (=2 + Hal )TV (Hz,, + h},_,)

=0

2[2(H$Ct+l + hm)TV" (H‘Tcm—l + hm 2— t)]

i=0

—Z mmt1mi) POi(25, e Tp_y )T (65)
1=0

where )
ri = T, — iy t=0,1,..,2n, (66)

i-1

O = —(h3)V N~z 4 Hag) = Y (hors ) VT (HTG + 1)

j=0
+ ) (g )N 1=0,1,0,20 =1, (67)
g, = hz, =0, :1<0. (68)

V. Disturbance Attenuation and the Approximate Minimax
Estimator

The approximate game-theoretic estimator using up to infinite order correction

terms as derived in sections III and IV is first developed as a minimax estimator
asympotically. Then, the disturbance attenuation problem as defined in section II is
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shown to be solved by this infinite order approximate game-theoretic filter. Based on
these, a N-th order approximate game-theoretic estimator is then proved to satisfy a
disturbance attenuation inequality with a higher disturbance attenuation threshold.
To begin, J* as in (23) is rewritten as

J*

]

Jo(%o, 25(0), wg) + €J1(21, 2o, 21(0), 25(0), wi, wp)
+e2J2(:f:2,§31,:?:o,:v;(ﬂ),a:'{(O),m’(",(O),w;,w;,wg) +.--

0/ ———II Teoo — B0) + €(Ta — 1) + (T2 — F2) + - - 1B

—§||(—z + Haeo) + e(hy + Hra) + €(h] + Hea) + -+ [l

“5“(‘”3 - :L'CO) + 6(:1;: - xCl) + "'”?g;o(:i'o)+cg;1 (#1)+...)TP-1
tel(zh — Teo) + €} = za1) + - JT(RE (F0) + €h, (1) +..) TV
[(=z+ Hzg) + €(hg + Hzl) + ...]dr.

(69)

(69) is obtained by first adding up the component equations as derived in (30), (40),
etc. and then using the completing the square technique. Note that ¢g* and h* are
tacitly assumed to be continuous and differentiable. Thus, the cost using the minimax
strategies derived in sections III and IV is

JM

Jo(£5, x5'(0), wg' ) + eJ1(27, 25, 21°(0), 25" (0), wi*, wg')
+€2J2(§329‘%;"23’m2 (0), z1*(0), zg o (0), wg', wi*,wg') + - - -

t
0/ ~§||(—z + Hig) + e(hy + H&T) + (AT + HEp) + - - || f -
0 .

—€l|(ag — 25) + €(2]" — 21) + - - '”?gg(z)(i;).“g;nl (@1)+-)TP-1

+el(2g = 5) + e(af — &) + . T(RE (85) + €hg (8]) + -+ )TV

[(—2z+ Hag') + (kg (25) + Hel') + - ldr

After some algebra, (70) is recast as a perfect square expression as

M = a/ g (== + HED) + ok + HES) + (R + HE5) + [

where

—6” Ty — :"'o) + 6(""71 - wl) +-- ”2G

+-2-||(hZL +ehy, + - (a3 — 35) + e(a]" — &) + -+ -7

G = (g5 (85) + egm (8]) + -+ ) P71 = (AL (&5) + €hZ, (37) + - - )TV HL
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Assumptions:

(1). g(z) and A(z) continuous and infinitely differentiable
(2). B(0) =2 _o=...=0
(3). The matrix functions A(-),T(-), and H(-) are continuous.

Theorem V.1:

For the dynamical system as given in (1) and (2), if Assumptions 1 and 2 are
satisfied, then the infinite-order game-theoretic filter derived in previous sections solve
the disturbance attenuation problem.

Proof of Theorem V.1:

For € = 0, the dynamical system (1) and (2) reduces to

t=Az+Tw, z=Hz+v (73)

Therefore, the disturbance attenuation problem as defined in (4) degenerates to its
corresponding linear problem [6, 9]. It is well known that the minimax strategy,
obtained from an approach as used here for a linear problem, is unique when the
initial state estimate vector is chosen as zero. Furthermore, from the estimation
theory for a nonlinear dynamical system obtained from a small perturbation of a linear
dynamical system as given in (73), there exists a sufficiently small perturbation such
that the minimax estimation strategy is also unique. Now, since (w;, Z;, i, z) = 0,
for 2 =0,1,2,- - -, satisfy the first order necessary condition as derived in section III
and IV, thus zero is indeed the minimax trajectory produced by the unique minimax
strategy. From (71), if Assumptions 1 and 2 are satisfied, then

JM = 0.

Consequently, the strategies Z7,27(0), and w™ derived in sections III and IV are

indeed the minimax estimator asymptotically. Naturally, when the adversaries do
not play their minimax strategies,

Jo = Jo(#g,20(0), wo) + €J1(27, 5, 21(0), 20(0), w1, wo)
+62J2(.’;I;, 12';,578, 372(0), 5111(0),370(0),’(1)2, wl,wo) R S 0. (74)

Alternatively, (74) is recast as

Daf(:?:*,w,:c(O)) <49, (75)
for all weL,[0,t] and z(0)eR" s.t. (w(r),v(7)) # 0 for all 7¢[0,?] and 2(0) # &(0),

where the disturbance attenuation function for the infinite order approximate game-
theoretic estimator is defined as in section II.
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Denote
N . *© .
f:*=Nf:*+R§:*= 5::61_'_ Z .%:6‘, (76)
1=0 i=N+1
Now, Dys(2*, w, z(0)) is decomposed as
b
Das(3", w,2(0)) = - <0, (77)
where
t
a= / lz = V&|4dr (78)
0
t
b= / —2(z — N3*)TQRz* + ||Ra*||4dr (79)
0

i
¢ = [l2(0) = V& (0)[I5 + /0 lwlffy— + llz — Hz — eh(z)|[v-1dr (80)

d = —2[2(0) = V& ()" P73 (0) + P2 (O) 12+ (81)

Corresponding to the disturbance attenuation problem defined in section II, a N-
th order disturbance attenuation problem for the N-th order approximate estimator
truncated from the infinite order minimax estimator is defined as to find V#* such
that

Doy(N&* w,z(0)) <0 >60>0 (82)
for all weL;[0,%] and z(0)eR™ such that (w(7),v(7)) # 0 for all 7€[0, ¢] and z(0) # Z(0)

and where

Jollz = Ni|3dr
l|z(0) - Nfc(ﬂ)lli,o-x + JollwlZys + |2 = He — eh(z)||3_.dr

(83)
Not that ¥3* is the truncated state estimate vector as defined in (76). Note that,
from (78) and (80),

D,y (Nz,w,2(0)) =

Daf(N:ic, w,z(0)) =

o8
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Theorem V.2:

For the dynamical system as in (1) and (2), if the disturbance attenuation problem
(4) is solved by the infinite order minimax estimator, then, the N-th order disturbance
attenuation problem as defined in (82) is solved by the N-th order estimator, N2*,
with a threshold which is at most twice of the original threshold.

Proof of Thm V.2:
From (77), using the fact that ¢ + d > 0, thus,

gs0+~b+0d50+|0d—b| (84)
c c ¢
In (81), £*(0) = 0, therefore d = 0, (84) is further reduced to
a 5] a+b
- < — < < 24.
c__0+c_0+c+d_20 (85)
%

Remarks V.3:

Since N is arbitrary, (85) shows that the disturbance attenuation inequality is
always bounded by 26 no matter how many terms are used in the approximate game-
theoretic filter.

)
Theorem V.4:

For the dynamical system as given in (1) and (2), if the disturbance attenuation
problem is solved by the infinite order minimax estimator and assumption (3) is
satisfied, then the N-th order disturbance attenuation problem (82) is sloved by the
N-th order approximate estimator. Moreover, the upper bound of the threshold is
proportional to N 4 1 power of e.

Proof of Theorem V.4:

Under assumption 3, one can show that there exists 0 < K; < 0o s.t.

|b] < Kyt (86)

where b is defined as in (79). From (80), ¢ is a zeroth-order term. From Theorem
V.2, J%l < 0. Therefore, there exists K, such that %1 < K,. Thus

b K N+1
||< 1€

< KM+ <6 (87)
c C
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Remarks V.5:
As N = o0, KyeN*t! — 0, thus ]%l — 0. Therefore, as N — oo,

5]

Doy (Nt w,z(0)) = - <0+ — -0 (88)

ol

This recovers the infinite order threshold 6.

o
V1. Extension to the Measurement Feedback Control Case

An extension of the approximate game-theoretic estimator as derived in sections
IIT and IV is presented here. In [9], a linear game-theoretic controller is derived via
solving a disturbance attenuation problem. To generalize, consider a small perturba-
tion of the dynamical system in [9] as

¢ = Az+ Bu+4Tw+ ef(z) (89)
Hz +Tyv + €q(z) (90)

First, a disturbance attenuation function is defined as
_ )3, + i ||=|f2 %d
Dys(u,v,w,z(0)) = ”wE )”QgT g il"lx”Q:- Il T2 :
2(0) = ()3 + Jo llwllfy— + vl dr

Based on the definition of (91), the control disturbance attenuation problem is defined
as to find an approximate optimal ocntroller u* s.t.

(91)

Dys(u*,v,w,2(0)) < 0, 8> 0, (92)
for all w,veL,[0,T] and z(0)eR™ such that (w(7),v(7)) # 0 for all 7¢[0,T] and z(0) #

#(0), simultaneously.
Similarly as in [9], to obatin a measurement feedback control based on causal mapping
of the measurement sequence, consider the minimax optimization problem

minumamvmaxw,x(o)j <0 (93)
subject to (89) and (90) where

A T ,
T = —3lle(0) - 201 + 5l=(T)IR,

1 T 2 2 2 2

45 [ el + = 0ly-s + Nolfy-r)r. (99
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In (94), T is the terminal time which is different from the present time ¢ in the
estimation problem. Note also that the maximization of v is not trivial in this problem
due to the unknown measurement sequence in the future.

First, begin with the maximization problem for fixed u and v

J* = maxw,z(o)j (95)
subject to (89) and (90). J is rewritten as

- 0 . 1
T o= =gl(0) = 0)5 + 5D, +
1 T
3 | Vel + Yl = Oltolfys — Ol = Ho = ealfosdr (99

where V = I VIT (I'; nonsingular). Furthermore, adjoin (89) to J using a Lagrange
multiplier p. The first order necessary condition for problem (95) follows easily as

2(0) = #(0)+ Pop(0), p(T) = 67" Qra(T), w = WI7p,
p = —cfip—ATp— (H+eq) V' (z—Hr—eq)—07'Qz.  (97)

Next, form a nonlinear two point boundary value problem from (97) and (89) as

[z] B [(H+eqz)T‘"i1H —-07'Q —AEVXE(sz)T] [i]

ef + Bu
* [ —(H + €¢;)"V(2 - €q) ] ’
z(0) = £(0) + Pop(0), p(T) = 67'Qra(T). (98)

To obtain an approximate game-theoretic control scheme, expand z, p, and u as

oo o0 (>}
III'—'—‘Z.’L’jCj, p=ZpJ~6j, u=Zujej. (99)
j=0 j=0 j=0

Also, from Taylor’s series expansion, let

f = ijej, g = ZQjej’ fz' = fojéj, 4z = Zqz‘jej' (100)

Jj=0 j=0 j=0 3=0
After substitution of the expansion, we have a series of linear two point boundary
problem as
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o el _ [ 4 I‘WPT"xo'+[ Bug ]
oo | = | BV H-01Q AT || po | V| -HTV
20(0) = £(0) + Popo(0), po(T) = 67" Qro(T) (101)
N TWIT e ],
| p1 | | HTV'H -67'Q -AT || ;|
[ fo+ Buy
Tpo+HTV’1q0—qz°V Yz — Hzy) ]
z:(0) = P0P1(0), p(T) = 671 Qra:(T) : (102)
62_[:1':2] _ ! I‘WI‘T][ ]+
e | BTV H-0Q -AT || p
[ fi + Buy
q:zov Y(Hz1 + q) — Q:cl Yz — Hzo) — fEp1 — £P0+HT‘7"1<11
z2(0) = P0P2(0), pa(T) = 671 Qrao(T) (103)

Furthermore, let z} and p}, called the worst case jth order state and Lagrange
multiplier, be the solution to the corresponding problem in (103). Assume

z; =&+ Pp}, 1=0,1,2,... (104)

Based on z} and p}, J* is expanded as

- ——uzpj )|, + —uzx eI, + / 1> =6l

7=0 j=0

+||Zujefn%— 9”Zl’;ﬁjnlz"wrr — 0|z - (Zm ¢) — ¢( quef 12 (d5)
j=0 Jj=0

j=0

where the expansion series

z* _Zx e, p* —ije’, q(z )—que’ (106)

j=0 j=0
are used. Denote J* =3 72, Jrek. Thus

T* 0 * 1 *
B = =31eOl% + 31T, +

1 T * »* *
5/ lz5l1G + lluollz — OllolItwrr — Ollz — Hagllg-dr,
0
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Iy = —0[p5(0)]" Popi(0) + [25(0))" Qra3(T) +
T
[ @97 Qut + 4 R = 0 TWIT 5 = 0z = Ha) V7~ Hi — i),
0 v
T* * D % 0 * * * 1 *
Jy = —0[p5(0))7 Pop3(0) — §IIP1(0)II%o + 25D Qra3(T) + §|Iw1”g);p
T * * 1 * 1 * %
+ /0 (25)" Qa3 + Sl + ug Ruz + 3 llurllz — 0(p5) TWT o —
* * X 7~ * * 9 * »

9”91”?‘er —0(z - H"”o)TV 1(_H"’2 - q1) - EHH‘TI + ‘Io"%'l—ld"'- (107)

V1.1 Zeroth-order Solution - the Linear Game-theoretic Controller

Consider the €® term of (103). As in the estimation problem previlously, we obtain
from sweep method using the assumption (104)

.’i‘o = A(i'o + BUO + pHT‘-/_l(Z - Hiﬁo) + G_I_PQHAJO, :%0(0) = ";"(0) (108)

P = AP+ PAT +TWIT - P(HTV'H - 67'Q)P. (109)

To determine the zerith-order term of the approximate game-theoretic control, add
the zero identity

T
0= S1r O Pors0) = SLATITPDIT) + 5 [ T TPAYE)  (110)
to J¢ as in (107). Thus

o 1. 1 (T A
Ty = plaa(T)E, + 5 [ ooy + luolly = O = Haolfodr — (11)

where St can be evaluated from

LTI, = —ATTPEED) + S, (12
St = QT[I-—H-IP(T)QT]—l.l (113)

Now, consider the minimax game problem

MiNy,,MmazsyJg (114)

subject to (108) where 9y = z — H#o. For conveniences, (108) is rewritten as
1::‘0 = A—§J0+B’U,0+I."l)}o (115)
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where

A=A+67'PQ, T=PHTV . (116)

Obviously, from [8], the zeroth-order correction of the approximate game-theoretic
measurement feedback controller is

up —R'BTS%, (117)
by = 07'VITS%,=0""HPSi, (118)

where S is determined from

-S = SA+ATS-S(BR'BT —¢7'TVIT)S +Q
= S(A+07'PQ)+(A+071PQ)TS - S(BR'BT — 07'PHTV'HP)S + Q
S(Ty =S¢ (119)

VI.2 First Order Correction Term of the Game-theoretic Controller

Consider the €' term of (103). As previously in the estimation problem, using
sweep method, the first order correction term of the approximate game-theoretic
controller is derived via the minimax game problem of J; with respect to the first
order correction terms of the controller and residual. Note that as previously in the
estimation problem the minimax game problem of J; with respect to the first order
terms of the controller and residual is not significant for the similar reason. First,
the first order estimation correction term of the approximate measurement feedback
controller is derived as

31 = A% +Bu+ I+ P(qR) V7 (z— Ha) — PHTV Y (Hi, + q7) + 671 PQ#,
+P(fm) py, #1(0) =0, (120)
P = AP+ PAT +TWIT - P(HTV'H - 67'Q)P, P(0)= P (121)

To proceed, after substituting ug and 95 into J? as in (107) and using an appro-
priately chosen zero identity as before, J; is converted to

- X . 1, . T_
T ) = G ()SaT)+ DI +0 [ har  (22)
0

where
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L = 67&3)7 Qi+ 07 (u3)" Ruy + (= — HE))" V= (Hsa + 5) + (65 P[(42) TV

(5" + Hzy) - (qxl)TV'l(z - Hag) — (fm) P (2} = &1) = (£2,)740)

0—1 6- -1
—||171||Q + IlulllR - —IIHw1 + 57—

—(a1 - xl)T[(qzo)TV (z — Hzg') + ( zo)T o]

(123)

To obtain the first order correction term of the approximate control, consider the

minimization problem

. Ta/ A P »
miny, Jy (21, T2, U1, Uz, z7)

subject to
& = A#, + Buy+ o1, #:1(0) =0,
£, = A&y + Buy+ g, 5(0) = 0,
& = Az} +TWITP(a} - %)+ Bui + f7,
2i(T) = [I-07P(T)Qr]*4:(T)
where

A = A+6'PQ-PHTV'H,

Vo1

Vo2

+(f2) ol + (f) il + fi

—PHTV g5 + P(q5)" V(= = Ha§") + S5 + P(F2)7 o
P[——HTV_IqI + (q;l)TVq(Z — Hzg) — (qxo)TV’l(Hxl +q5°)

(124)

(125)
(126)
(127)
(128)

(129)
(130)

(131)

Next, using Lagrange Multiplier Techniques, the 1st order optimality condition

for the problem (124) is derived as

. - - _ . 8. . _
B = —ATR—P'TWITB - [(z — Hap)TV'22p — HTV-1qr P

oz}
0fsi 5 | potsmpys _ my .y (9  oas
HAT P + PPN - )+ (GEYTIT — 1o
1

HaE)TV e - Ha) = (G0 + (1 g B0 = BT =0, (132

f, =

4P P(6 — p7) + HTV (Hiy + qF), A(T) = 07" Spéy(T),
& = —ATe—07'Qiy— H'V'65, &(T) =07 Spay(T),
u} —oR—lBT(B + ),
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—AT3 - 67'Qé — ()7 p5 — (43)" V7! (2 — Hag') + PT'TWIT B

(133)
(134)
(135)




From (101),

po = —ATpr — 071Qéy — HTV7'55, p3(T) = 071 Sriy(T). (136)

Comparison of (134) and (136) reveals that pg*(7) = (), for all 7. In addition, note
that

BIEENT — (s (PR = (s 10— V255 = Ve - Hag). (130
Substitution of (137) into (132) yields

B=—ATB— PT'TWTTB, B(0) = A(T) = (138)
Thus, B(7) = 0, for all 7. Clearly, (133) is reduced to

§=—ATy—07'Qd - (f2)" o5 ~ () TV (2 — Hal') + H'V T (Hir + 7). (139)

From (102), after some algebra,

p = AT+ (HTVTUH = 07Q)8 + HTV TGS — (45)T V7 (= - He)
() Te5s A7 (T) = 67 ST, (140)

Comparison of (139) and (140) reveals that for all 7,

¥(r) = P (7). (141)
Substitution of A(7) = 0 and (141) into (135) yields

= —0R'BTp™ = —9R'BTP ' (aT — }), (142)

where P is calculated from (121). Unfortunately, (142) is not implementable since
both z7* and 2} are required to calculate uj.
Alternatively, form a two-point boundary value problem from (125) and (139) as

A —BR'BT [ %, +
HTV-1H —6-1Q —AT 5

[ — (Yo o (q;)TV-l(z—Hx@)] (143)
#(0) = 0, 7 )-o 1STx1(T) (144)

—

=2 B

e
I
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As previously, let the solution of (143) and (144) be &} and ¥*. Using sweep method,
assume

1408713, (145)

8>
-

il

82

The choices of

_§ = 3A+ATS - SBRBTS - (HTV'H - 671Q), 5(T)=Sr (146)
i = A# 400, £H(T)=0 (147)

render (145) as an identity, where

A=A+60"'MQ - MHTV'H, M =P 406577 (148)
dor = —MHTV g5 + M(q2)" V(2 — Hag) + M(f) 5 + f5'- (149)

Finally, the first order correction terms of the approximate game-theoretic controller
and the residual are derived as

wl = —RBTS(3} - #1) (150)

Note that in (147) boundary condition is at the terminal time. Therefore, in order to

implement 3, for the time interval from the present time to future we need to rewrite
z— Hzf as

z— Hal = 0% + H(&5 — a7), (151)

due to the fact that the measurement vector in the future is not available to the
designer.

V1.3 Higher Order Correction Terms of the Approximate Game-theoretic Controller

Similar to the first order case, higher order correction terms of the approximate
game-theoretic control and residual is derived as, for n < 2, (using 2, = £, +60S5 “1y0)

wt = —R'BTS(3% - 3,); (152)

where
-%n = Ain + Von, in(o) = Oa (154)
(155)
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n-1

bon = _P[Z(‘I;;)TV_I(Hx:z-l—i + qhzmi) — (f;.')Tp:z—l—i] + fa-1s (156)
1=0
n-1 _

'ljon = —M[Z(ng)Tv—l(Hz;—l—i + q:z-2-i) - ( x.)Tpn l-—i] + f*—l’ (157)
=0

<, = -z (158)

Furthermore, P and S are evaluated from (121) and (146), respectively.

VI.4 Disturbance Attenuation and the Approximate Controller

The disturbance attenuation property for the approximate game-theoretic con-

troller derived in subsections VI.2 and V1.3 is established. Two disturbance attenu-
ation properties are presented here. First, the disturbance attenuation property for
the infinite order controller is proved. Based on this, the disturbance attenuation
property for the finite order approximate controller is shown. For the later case, the
threshold is first derived as twice of the original threshold. Then, as the number of
correction terms increased, this threshold is proved to shrink and converge to the
original one when infinite order controller is used.

The disturbance attenuation property of the approximate controller using infinite

correction terms can be proved similarly as the estimation problem in section V.

To start, J* as in (105) is rewritten as

1 R R T —1 0—1

§||$0(T) + ey (T) +--|I3, + 9/ —”wo tedr+---lg+ 7”"0 +eur + - ||k

—fraci2||(z — Hio) + e(—q; — H&1) + €(—q; — Hiz) + - -|[5-

—el|(25 — £o) + €(@] — &1) + - - |52 4esz, +-97P1

tel(zh — #o) + e(z} — &1+ 1T (al, +eal, + - )V (—2z + Hay) + e(gp + Hap) + - - Jdr.
(159)

Suppose u;, for 2 = 0,1, - -, play their minimax strategies, then

1 A% A x T —l A% 0-1 ® *
ST+ D)+ A, + 0 [ T+ it M+ T+ e+ -l
— fractal(z — H&5) + e(~af ~ HE) + (=g ~ Hip) + - lfss

—ell(ef — £3) + e(e} = 1)+ lieesge-re-

+e[(zg — &) + (2" — 27) +- ]T(‘Izo +eqz, + - )TV-I[(_z + Hzg') + e(qo + Hzxp') +- -
(l
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Assumptions:

(4). f(z) and g(z) continuous and infinitely differentiable
(5). 9(0) = (0) = -+ = 0

Theorem VI.1:

For the Dynamical system as given in (89) and (90), if Assumptions (4) and (5)
are satisfied, then the infinite-order game-theoretic controller derived in sub-sections
V1.2 and VL3 solve the disturbance attenuation problem (92).

Proof of Theorem VI.1:

The proof here is brief since it is similar to Theorem V.1. To begin, it is clear that
(w;, vi, x5, u5,2) =0, for 1 = 0,1,2, - -, satisfy the first order necessary conditions as
derived in section VI, therefore zero is indeed the minimax trajectory produced by
the minimax strategy. Thus, if Assumptions (4) and (5) are satisfied, then

JM =0 (161)

Consequently, the strategies u?, z7*(0), w™, v, 1=0,1,2,--, are indeed the minimax
controller asymptotically. If the adversaries do not play their minimax strategies,

J*(UB, U;, o ';.'130(0),.’171(0), 0y Wo, Wy, 23 Vo, V1, ) <0 (162)
Alternatively, (162) is recast as

Days(u™,z(0),w,v) < 8 (163)
for all welz[0,T), veL,[0,T] and z(0)eR" s.t. (w(7),v(7)) # 0 for all 7€[0,T] and
z(0) # 2(0).

¢

To show that a finite order approximate controller, truncated fro_m the infinite or-
der controller, achieves the disturbance attenuation property, first, D,¢(u*, v, w, z(0))
is decomposed. To proceed, denote

N )
u =Ny Byt = Zu’i’e" + Z ule. (164)

=0 i=N+1
Using (164), D,s(u*, v, w,z(0)) is rewritten as

D, s(u*,v,w,z(0)) =

ot
+
(S ]

<4, (165)

c
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where

T
a = |z, + /0 Nzl|g + 1V u*||kdr (166)
T
b = / 2(Nu*)T RRu*||Fu*||%dr (167)
° T
¢ = Ilw(O)—i(O)lliao-:+ /0 Nwlld - + ||v]l}-dr (168)

Corresponding the disturbance attenuation problem defined in section VI, a N-th
order disturbance attenuation problem is defined as to find Mu* s.t.

Doy(Nut,v,w,2(0)) <6 >8>0, (169)

for all w, veLy[0, T) and z(0)eR™ such that (w(r),v(r)) # 0 for all 7¢[0,T] and z(0) #
£(0), simultaneously. Clearly

Doy(Nur,v,w,2(0)) =

ol &

(170)
Theorem VI.2:
If the infinite order disturbance attenuation problem as posed in (92) is solved,

the N-th order disturbance attenuation problem is achieved with a threshold which
is at most twice of the original threshold.

Proof of Theorem VI1.2:

From (165) and (170),

<20 (171)

Theorem VIL.3:

For the dynamical system as given in (89) and (90), suppose the infinite-order
disturbance attenuation problem as defined in (92) is solved by the infinite-order
minimax controller, then the N-th order disturbance attenuation inequality as defined
in (169) is achieved by Mu*. The upper bound of the threshold is shown to be
proportional to the (N+1)-th power of .

Proof of Theorem VI1.3:
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From (167), there existé 0 < K, < oo such that

— T N . * . b .
5 = / 2> we TR we) + 1| Y uieBldr (a7)

i=0 N+1 N+1
< KqeVtt, (173)
From (168), € is a zeroth-order term. Moreover, from Theorem VL1, LBE-[ < 0. There-
fore, there exists K, satisfying %‘1 < K,y. Thus,
7 s N+1 _
'—_—' < f‘—i—— < KoVt <0 (174)
c c
As N — 00, K€Vt — 0, thus ]%l — 0. Therefore,
2 N, x a n |5I 0
D.s(Mu ,v,w,w(O))=—6—§0+-E——->0. (175)
¢

VII. Conclusion

Both nonlinear minimax estimator and controller are derived via a regular per-
turbation technique by solving disturbance attenuation problems. The disturbance
attenuation problems are first converted to their associated deterministic game prob-
lems. Then, adopting a calculus of variation approach, the estimation and control
game problem are solved. In the solution processes, both nonlinear two-point bound-
ary value problems and the cost functions are decomposed. Following the perturbation
techniques, the expansion terms for the estimator and the output feedback controller
are derived sequentially. The optimization of the odd expansion terms of the cost
function are proved to be insignificant. Most importantly, using only finite terms, say
the zeroth-order and the first order correction term, both the nonlinear approximate
estimator and controler are proved to have disturbance attenuation property. In addi-
tion, these property is a priori. Using arbitrary term in the estimator and controller,
the disturbance attenuation threshold is first proved to be twice of the original op-
timal threshold. As more terms are used, the threshold decreases according to €V*?
and converges to the original one when infinite order is used. This approach is demon-
strated here as a very powerful tool to provide implementable estimation scheme and
control algorithm in the output feedback case for the class of linear dynamical sys-
tems perturbed by a small scale of nonlinearities both in the system dynamics and
the measurement process.
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